UNIVERSITY OF CALIFORNIA
SANTA CRUZ

CEPH: RELIABLE, SCALABLE, AND HIGH-PERFORMANCE
DISTRIBUTED STORAGE

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE
by
Sage A. Weil

December 2007

The Dissertation of Sage A. Well
is approved:

Professor Scott A. Brandt, Chair

Doctor Richard Golding

Professor Charlie McDowell

Professor Carlos Maltzahn

Professor Ethan L. Miller

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies

Copyright(© by
Sage A. Weil

2007

Table of Contents

List of Figures Vii
List of Tables Xiv
Abstract XV
Dedication XVii
Acknowledgments XVili
1 Introduction 1
1.1 Contributions 3
1.2 Outline e 5
2 Related Work 7
2.1 LocalFile Systems 7
2.2 Client-Server File Systems e 10
2.3 Distributed File Systems 11
2.3.1 Wide-areaFileSystems, 12
2.3.2 SANFileSystems 13
2.3.3 Objectand Brick-based Storage 13
234 Non-POSIXSystems 15
3 Ceph Architecture 17
3.1 Ceph. . . e 17
3.2 ClientOperation. e 20
3.2.1 Filel/Oand Capabilities 21
3.2.2 Client Synchronization 22
3.2.3 Namespace Operations i 24
3.3 CommunicationModel 25

4 Distributed Metadata Management 27

4.1 Backgroundand RelatedWork L. 0 3
4.1.1 LocalFileSystems 30
4.1.2 Distributed File Systems L. 32

4.2 MetadataStorage e e e 37
421 Embeddedlnodes. 39
4.2.2 Remote Linksandthe AnchorTable 40
4.2.3 LargeJdournals 41

4.3 Adaptive Workload Distribution 42
4.3.1 Subtree Partitioningas SoftState oL 43
4.3.2 Metadata Replication 46
433 Locking e 47
434 LoadBalance 48
4.3.5 Subtree Migration e 49
4.3.6 Directory Fragments 50
4.3.7 TrafficControl 52

4.4 Failure Recovery e 53
4.4.1 Journal Structure 54
4.4.2 Failure Detection 55
4.4.3 ReCoVery 55
444 DIiSCUSSION e 59

45 Evaluation e 59
4.5.1 Metadata Partitioning 60
452 Embeddedlnodes. 65
453 Journaling 69
4.5.4 Adaptive Distribution o 71
455 MetadataScaling 72
45.6 Failure Recovery 74
457 Availability 77

46 FutureWork L 78

47 EXPErienCeS v o i i 79

4.8 Conclusions e 80

5 Data Distribution 82

51 RelatedWork e 84

5.2 The CRUSHalgorithm 86
5.2.1 HierarchicalClusterMap, 87
5.2.2 ReplicaPlacement 88
5.2.3 Map Changesand DataMovement 95
524 BucketTypes 96

5.3 Evaluation 104
5.3.1 DataDistribution 104
5.3.2 Reorganization and Data Movement 107

5.3.3 Algorithm Performance 109

5.34 Reliability 112
54 Future Work e e 113
5,5 Conclusions e 114
Distributed Object Storage 116
6.1 OVEIVIEW o e e e e 117
6.2 Distributed ObjectStorage 121
6.2.1 DataPlacement 122
6.2.2 ClusterMaps e 124
6.2.3 Communication and Failure Model 126
6.2.4 MONItOrs e 127
6.25 MapPropagation 129
6.3 Reliable Autonomic Storage o 130
6.3.1 Replication 130
6.3.2 Serializationversus Safety 132
6.3.3 MapsandConsistency e 133
6.3.4 MersionsandLogs 135
6.3.5 Failure Recovery e 136
6.3.6 ClientLockingand Caching 142
6.4 Performance and Scalability 144
6.4.1 Scalability 147
6.4.2 Failure Recovery e 151
6.5 FutureWork 153
6.6 RelatedWork e 155
6.7 CoNncClusions 161
Local Object Storage 162
7.1 Object Storage Interface 62 1
7.2 Datalayout e e 164
7.3 DataSafety e 164
7.4 Journaling e 165
7.5 Evaluation 166
7.6 RelatedWork e 167
7.7 Conclusion 168
Conclusion 169
8.1 FutureWork 169
8.1.1 MDSLoadBalancing, 169
8.1.2 Clientinteraction 170
8.1.3 SecCurity e 171
8.1.4 QUOtAS e e 171
8.1.5 QualityofService 171

8.1.6 Snapshots 172
8.2 Summary 172
A Communications Layer 175
Al AbstractInterface 751
A2 SimpleMessenger e e e e e e e 176
A.3 FakeMessenger 617
B MDS Implementation Details 178
B.1 MDSDistributedCache 178
B.1.1 CacheStructure 179
B.1.2 Replicationand Authority 182
B.1.3 Subtree Partition 183
B.2 MetadataStorage 185
B.2.1 Directory Fragments and Versioning 185
B.2.2 Journal Entries 187
B.23 AnchorTable 188
B.3 Migration 189
B.3.1 CacheInfrastructure 189
B.3.2 Normal Migration 192
B.4 Failure Recovery 194
B.4.1 JournalReplay 195
B.4.2 ResolveStage. e 195
B.4.3 ReconnectStage 197
B.4.4 RejoinStage e 197
B.5 AnchorTable 201
B.5.1 TableUpdates. 201
B.5.2 Failure Recovery e 201
Bibliography 203

Vi

List of Figures

3.1

4.1

4.2

4.3

4.4

System architecture. Clients perform file I/O by communicating directly with
OSDs. Each process can either link directly to a client instance, or inteithct

amounted filesystem. 18

All metadata for each directory, including file names (dentries) and tliesno
they reference, are stored in a single object (identified by the direstionyde
number) in the shared, distributed object store. Inode 1 is the root diyecta 38
Structure of the metadata cache as seen by a single MDS. Metadata is par-
titioned into subtrees bounded by directory fragments. Each MDS replicates
ancestor metadata for any locally managed subtrees. Large or buspidégc

are be broken into multiple fragments, which can then form nested subtrees45
Directories are fragmented based on a tree in which each interior masde h

2" children, and leaves correspond to individual fragments. Fragmentiear
scribed by a bit pattern and mask, like an IP subnet, partitioning an integer
namespace. Dentries are assigned to a specific fragment using athetstrnit 51

MDS performance as file system, cluster size, and client base ard.scale . 61

Vii

4.5 Percentage of cache devoted to ancestor inodes as the file systetrhadien
and MDS cluster size scales. Hashed distributions devote large portitmerof
caches to ancestor directories. The dynamic subtree partition has slightly more
ancestors than the static partition due to the re-delegation of subtrees nested
within the hierarchy. 62
4.6 Cache hit rate as a function of cache size (as a fraction of total filensysze).
For smaller caches, inefficient cache utilization due to replicated ancestors
sultsinlower hitrates. L 63
4.7 No traffic control (top): nodes forward all requests to the authomtdaiDS
who slowly responds to them in sequence. Traffic control (bottom): ttieau
itative node quickly replicates the popular item and all nodes responduestxy 64
4.8 Cumulative directory size for a variety of static file system snapshotsiy Ma
directories are very small (or even empty), and less than 5% contain more tha
100 entriesS. e 66
4.9 Study of hard link prevalence in file system snapshots. For eacklwtaghe
total file system size and the percentage of files with multiple links are shown.
Stacked bars indicate the fraction of multilink files with all links in the same di-
rectory, with parallel cohorts linked by multiple directories, or with no obvious

locality properties. 67

viii

4.10 An MDS cluster adapts to a varying workload. At times 200 and 350 thle-wo

load shifts, as 400 clients begin creating files in private directories andrihen

a shared directory. In both cases load is redistributed, in the latter cas¢haf

large (and busy) directory is fragmented. At time 280 two additional MDSs join

thecluster. 71
4.11 Per-MDS throughput under a variety of workloads and clustes.si2s the

cluster grows to 128 nodes, efficiency drops no more than 50% beldecper

linear (horizontal) scaling for most workloads, allowing vastly improved per

formance over existing systems. o o oo 72
4.12 Average latency versus per-MDS throughput for differentehsizesnakedirs

workload). e 74
4.13 Throughput in a small cluster before, during, and after MDS falateime

400, 500, and two at 450. Unresponsive nodes are declared fleadsec-

onds, and in each case recovery for a 100 MB journal takes 4-@idsco . . . 75
4.14 Per-MDS throughput in a 4-node cluster under a compilation workhogd

heavy read sharing ofLlib. Replication of popular metadata allows progress

to continue even when the MDS managing the heavily shared directoryssuffe

afailure. 77

5.1 Apartial view of a four-level cluster map hierarchy consisting of rmabjnets,
and shelves of disks. Bold lines illustrate items selected by sglelstoperation

in the placement rule and fictitious mapping described by Table 5.1. 91

5.2 Reselection behavior stlect(6,diskyvhen device = 2 (b) is rejected, where

the boxes contain the CRUSH outd&tof n = 6 devices numbered by rank.

The left shows the “first n” approach in which device ranks of existiegaks

(c,d, e, f) may shift. On the right, each rank has a probabilistically independent

sequence of potential targets; hdre= 1, andr’ =r + f,n=8 (deviceh). . .. 94
5.3 Data movement in a binary hierarchy due to a node addition and the sghseq

weightchanges. 96
5.4 Node labeling strategy used for the binary tree comprising each trketbuc. 100
5.5 Efficiency of reorganization after adding or removing storage dstiee levels

deep into a four level, 7290 device CRUSH cluster hierarchy, versusHrU

and RUSH . lisoptimal. 108
5.6 Efficiency of reorganization after adding items to different bucke¢gypl is

optimal. Straw and list buckets are normally optimal, although removing items

from the tail of a list bucket induces worst case behavior. Tree hutlanges

are bounded by the logarithm of the bucketsize. 109
5.7 CRUSH and RUSHcomputation times scale logarithmically relative to hierar-

chy size, while RUSH scales linearly. 110
5.8 Low-level speed of mapping replicas into individual CRUSH bucketsuge

bucket size. Uniform buckets take constant time, tree buckets take logarith

time, and list and straw buckets take lineartime. 111

6.1

6.2

6.3

6.4

6.5

A cluster of many thousands of OSDs store all objects in the system. A small,
tightly coupled cluster of monitors collectively manages the cluster map that
describes the current cluster composition and the distribution of data. Each
client instance exposes a simple storage interface to applications.118
Objects are grouped inpdacement group&Gs), and distributed to OSDs via
CRUSH, a specialized replica placement function. Failed O®Dg.(osd1)

are filtered out of the final mapping. 122
Replication strategies implemented by RADOS. Primary-copy procestes bo
reads and writes on the first OSD and updates replicas in parallel, while cha
forwards writes sequentially and processes reads at the tail. Splayataplic
combines parallel updates with reads at the tail to minimize update latency. . . 131
RADOS responds with aack after the write has been applied to the buffer
caches on all OSDs replicating the object (shown here with splay repligation

Only after it has been safely committed to disk is a seammmitnotification
senttotheclient. 132
Each PG has a log summarizing recent object updates and deletions. The
most recently applied operation is indicatedlagt update All updates above

last completeare known to have been applied, while any missing objects in the

interval betweerast completeandlast updateare summarized in the missing

Xi

6.6

6.7

6.8

6.9

Reads in shared read/write workloads are usually unaffected by opdie-

tions. However, reads of uncommitted data can be delayed until the update
commits. This increases read latency in certain cases, but maintains a fully
consistent behavior for concurrent read and write operations in et dvat

all OSDs in the placement group simultaneously fail and the vadteis not
delivered. 143
Per-OSD write performance. The horizontal line indicates the upper limit im-
posed by the physical disk. Replication has minimal impact on OSD through-
put, although if the number of OSDs is fixeatway replication reduces total

effectivethroughput by a factor af because replicated data must be written to

Write latency for varying write sizes and primary-copy replication. Mbea

two replicas incurs minimal additional cost for small writes because replicated
updates occur concurrently. For large synchronous writes, trarismiisies
dominate. Clients partially mask that latency for writes over 128 KB by acquir-
ing exclusive locks and asynchronously flushingthedata. 145
Latency for 4 KB writes under different replication strategies andsefeepli-
cation. Splay replication augments chain replication with parallel replica up-
dates to achieve performance similar to primary-copy replication for higlsleve

ofreplication. e 146

Xii

6.10 Normalized write latency per replica for 1 MB writes under differeplication

strategies and levels of replication. Parallel replication does not improveiate

for replications levels belowsix. 147
6.11 OSD write performance scales linearly with the size of the OSD cluster until

the switch is saturated at 24 OSDs. CRUSH and hash performance improves

when more PGs lower variance in OSD utilization. 148
6.12 Duplication of map updates received by individual OSDs as the sthe ofus-

ter grows. The number of placement groups on each OSD effects nwhber

peers it has who may share mapupdates. 1. 15
6.13 Write throughput over time as a saturated 20 OSD cluster recovenrsiro

OSD failures at time 30. Data re-replication begins at time 50 and completes at

time 80. 152
6.14 Write throughput over time as an unsaturated 20 OSD cluster re¢mrarsne

OSD failure at time 30 and two more attime 80. 152

7.1 Performance of EBOFS compared to general-purpose file systemsugtith
small writes suffer from coarse locking in the prototype, EBOFS nealtly sa
rates the disk for writes larger than 32 KB. Since EBOFS lays out data ie larg
extents when it is written in large increments, it has significantly better read

performance. e 166

Xiii

List of Tables

51

5.2

5.3

6.1

B.1

A simple rule that distributes three replicas across three cabinets in thesam@l
Summary of mapping speed and data reorganization efficiency otdiffencket
types when items are added to or removed froma bucket. 7.
As the total utilization of available storage approaches capacity, the numbe
of devices that would otherwise overfill and that require adjustmentasere

CRUSH computation increases slightly while decreasing variance. 1Q6.

Data elements present in the OSD cluster map, which describes both cluster

9

state and the distributionofdata. 125

Sample anchor table with two anchored inodes. Note that the full pathvisisho
only for illustration and is not part of the table. The hash mark (#) in therpare
column is used to denote a particular fragment of the given directory,enher
indicates the directory is not fragmented. The /usr entry has a ref cotwmbo

because it is referenced by both /usr/bin and /usr/lib. 189

XV

Abstract

Ceph: Reliable, Scalable, and High-performance DistribStedage

by

Sage A. Weil

As the size and performance requirements of storage systems haveséuk;réibe
system designers have looked to new architectures to facilitate systeildyalBhe emerging
object-based storage paradigm diverges from server-basgdNFS) and SAN-based storage
systems by coupling processors and memory with disk drives, allowingsys$tedelegate low-
level file system operation®(g. allocation and scheduling) to object storage devices (OSDs)
and decouple I/O (read/write) from metadata (file open/close) operatitwen recent object-
based systems inherit a variety of decades-old architectural choioes lggek to early Wix
file systems, however, limiting their ability to effectively scale.

This dissertation shows that device intelligence can be leveraged to preliaae,
scalable, and high-performance file service in a dynamic cluster envirinthpresents a dis-
tributed metadata management architecture that provides excellent peréerared scalability
by adapting to highly variable system workloads while tolerating arbitrarerevdshes. A
flexible and robust data distribution function places data objects in a laygandc cluster of
storage devices, simplifying metadata and facilitating system scalability, whiléprg a uni-
form distribution of data, protection from correlated device failure, dficient data migration.
This placement algorithm facilitates the creation of a reliable and scalablet shpeage ser-

vice that distributes the complexity of consistent data replication, failuretitateand recovery

across a heterogeneous cluster of semi-autonomous devices.
These architectural components, which have been implemented in the Ceeiloitdid
file system, are evaluated under a variety of workloads that show supi@erformance,

scalable metadata management, and failure recovery.

To Elise and Riley,

who make it all worthwhile,

and to my parents, to whom | owe so much.

XVii

Acknowledgments

I would like to thank my advisor, Scott Brandt, and Carlos Maltzahn for thealin
able guidance, support, and friendship over these past few years.

| thank Ethan Miller for his collaboration and guidance in my research, and f
his help in editing this thesis. | gratefully acknowledge Darrell Long, Ridhaolding, and
Theodore Wong for their excellent suggestions for my work. | thankighsicDowell for his
generous service on my committee.

| would like to thank the students of the SSRC for their support and friepdihistal
Pollack, Feng Wang, Chris Xin, Andrew Leung, Chris Olson, Joel Vifm, Bisson, and Rosie
Wacha have provided a stimulating and challenging environment, and hdeealla pleasure
to work with over the years.

Finally, 1 would like to thank Bill Loewe and Tyce McLarty for their continuadps
port. In particular, their generous lobbying on my behalf helped seagesa to computing
resources at LLNL that were extremely helpful in my research.

This research was supported by Lawrence Livermore National baadogr

XViii

Chapter 1

Introduction

System designers have long sought to improve the performance of fisgrs;avhich
have proved critical to the overall performance of an exceedinglydoctass of applications.
The scientific and high-performance computing communities in particular mxemcdvances
in the performance and scalability of distributed storage systems, typicalliicing more
general purpose needs by a few years. Traditional solutions, exexdflifiNFS [72], provide a
straightforward model in which a server exports a file system hieraretiglients can map into
their local name space. Although widely used, the centralization inhereng ialignt/server
model has proven a significant obstacle to scalable performance.

More recent distributed file systems have adopted architectures baebgtottbased
storage, in which conventional hard disks are replaced with intelligentiobsjerage devices
(OSDs) which combine a CPU, network interface, and local cache witderlying disk or
RAID [14, 30, 31, 104, 107]. OSDs replace the traditional block-léwtdrface with one in

which clients can read or write byte ranges to much larger (and often aseed) named

objects, distributing low-level block allocation decisions to the devices theeselClients
typically interact with a metadata server (MDS) to perform metadata oper#tipag rename,

while communicating directly with OSDs to perform file 1/0O (reads and writeshisogntly
improving overall scalability.

Systems adopting this model continue to suffer from scalability limitations due to
little or no distribution of the metadata workload. Continued reliance on traditfdealystem
principles like allocation lists and inode tables and a reluctance to delegate imedligethe
OSDs have further limited scalability and performance, and increased shefaeliability.

| have developed a prototype for Ceph [100], a distributed file systetrpthaides
excellent performance, reliability, and scalability. The architecture iscbasdehe assumption
that systems at the petabyte scale are inherently dynamic: large systemevatabin built
incrementally, node failures are the norm rather than the exception, aqddhiy and character
of workloads are constantly shifting over time.

Ceph decouples data and metadata operations by eliminating file allocation tables
and replacing them with a novel generating function. This allows Ceph todgeehe intel-
ligence present in OSDs to distribute the complexity surrounding data acqatste serial-
ization, replication and reliability, failure detection, and recovery. Ceph esilan adaptive
distributed metadata cluster architecture that streamlines common metadata npevhiie
dramatically improving the scalability of metadata access, and with it, the scalabilibye of
entire system. | discuss the goals and workload assumptions motivating <hoite design
of the architecture, analyze their impact on system scalability, performandeeliability, and

relate experiences in implementing a functional system prototype.

1.1 Contributions

The thesis of this dissertation is that device intelligence can be leverageovidgr
reliable, scalable, and high-performance file service in a dynamic clusteoement.

The primary contributions of this dissertation are threefold.

First, | present a distributed metadata management architecture that grexadient
performance and scalability while seamlessly tolerating arbitrary nodeesa&eph’s MDS
diverges from conventional metadata storage techniques, and in @diagjlgates adaptive file
system and workload partitioning among servers, improved metadata availailityfailure
recovery. Specifically, file system metadata updates are initially written tq lagjly-trimmed
per-MDS journals that absorb temporary and repetitive updates. Fildg)imoetadata is then
embedded in the file system namespace and stored inside per-directarts dbjeefficient
read access and metadata prefetching. | present a comparativasaobdistributed metadata
partitioning techniques, and describe the novel dynamic subtree partitiapprgach used by
Ceph. Notably, my MDS defines the namespace hierarchy in terms of dydchgments,
facilitating fine-grained load distribution even for large or busy directpaes implements a
traffic control mechanism for dispersing load generated by flash creveddden concurrent
access by thousands of client nodes—across multiple nodes in the MD& .clus

The second contribution of this work is a robust hierarchical data digitsibfunction
that places data in a large distributed storage system. When used in plamevefitional al-
location tables, the algorithm efficiently addresses a range of criticabstasdated placement

issues, including statistically uniform data distribution, correlated failuredatd safety, and

data migration in dynamically changing storage clusters. Specifically, thatalggrlaces sets
of data objects (either object replicas, or parity or erasure coded fragjria a hierarchy of
storage devices using a flexible rule language. The flexible hieraraiicsier description fa-
cilitates an adjustable balance between extremely efficient placement caltsitid mapping
stability when devices are added or removed from the cluster. It furtiogides the ability to

enforce the separation of replicas across user-defined failure dariaiiting exposure to data
loss due to correlated failures.

My third contribution is a distributed object storage architecture that leesrdg-
vice intelligence to provide a reliable and scalable storage abstraction with mioveright.
Specifically, | describe an efficient, scalable, and low-overhead clost@eagement protocol
that facilitates consistent and coherent data access through the atiopagf small cluster
maps that specify device membership and data distribution. This allows a dychrsier
of semi-autonomous OSDs to self-manage consistent data replication, f3dtaetion, and
failure recovery while providing the illusion of a single logical object stoithwlirect, high-
performance client access to data.

These contributions have been implemented as part of the Ceph file sysitwm pr
type. The prototype is written in roughly 40,000 semicolon-lines of C++ caulehas been
released as open source under the Lesser GNU Public License (LtGB&ijve as a reference

implementation and research platform.

1.2 Outline

The remainder of this dissertation is structured as follows.

Chapter 2 introduces past and existing approaches to file system désigaral ar-
chitectural issues affecting performance, scalability, and reliability aredatred, and in certain
cases related to Ceph'’s contributions. In general, however, spégifedated work is discussed
in context in the chapters that follow.

Chapter 3 introduces the Ceph architecture and key design featuresvétall op-
eration of the system is described from the perspective of a clientrp@rfg basic file system
operations in order to provide an overview of how the various system aoemts interact.

Chapter 4 describes the design, implementation, and performance chiatiastef
Ceph’s metadata server (MDS). | focus on the design implications of €epitonventional
approach to file (inode) storage and update journaling on metadata stdyagenic workload
distribution, and failure recovery. A variety of static file system snapsiadsworkload traces
are analyzed to motivate design decisions and performance analysiggidoanance is eval-
uated under a range of micro-benchmarks and workloads under botlalkose and failure
scenarios.

Chapter 5 describes CRUSH, the special-purpose data placement afgositia by
Ceph to distribute data among object storage devices. Specifically, |saditire problem of
managing data layout in large, dynamic clusters of devices by eliminating mional alloca-
tion maps and replacing them with a low-c@stction A variety of issues related to scalability,

data safety, and performance are considered.

Chapter 6 introduces RADOS, Ceph’s Reliable Autonomic Distributed Object S
RADOS provides an extremely scalable storage cluster management plétfatrexposes a
simple object storage abstraction. System components utilizing the objectcatorexpect
scalable, reliable, and high-performance access to objects withowgroomg themselves with
the details of replication, data redistribution (when cluster membership exmarabntracts),
failure detection, or failure recovery.

Chapter 7 describes EBOFS, the low-level object storage library utiligdRIADOS
to efficiently manage collections of objects on locally attached disks.

Finally, Chapter 8 provides some concluding remarks and describeges/efhcon-

tinued research.

Chapter 2

Related Work

This research draws upon a large body of experience and reseigiidtie and storage
systems. This includes experience with local file systems (which interact wihyattached
disks), network file systems that interact with a remote server, and a cdrdstributed file

system architectures in which file system data is spread across multiple hosts.

2.1 Local File Systems

File system design over the past three decades has been heavily iaflugnthe
original Unix file system, and the Fast File System (FFS) [65] found in BSIiX.UThe in-
terface and behavior—semantics—of these early file systems formed tiseobéize POSIX
SUS (Single Unix Specification) standard [12] to which most modern systedhagplications
conform.

BSD’s FFS, like most “local” file systems, is designed to operate on a locallyhaith

hard disk storing fixed-size sectors or blocks. (In contrast, Cephdtuatér” file system that

7

operates on a large number of hosts connected by a network.) Hardadiths time were
slow to “seek” or position themselves over a given block, but once posiicould read data
relatively quickly. To avoid positioning delays as much as possible, FRBrésbcylinder
groups representing localized regions of disk falling within the same cylindricabregyof the
spinning hard disk platter. Related data and metadata were stored in the disnther gyroup,
such that most seeks involved minimal repositioning of the disk arm.

Over the past few decades, disk performance has increased sighyfiddowever,
positioning latencies have dropped much more slowly than disk transferh@atesincreased,
making careful layout of data on disk even more important than before.d€hire to reduce
position latencies motivated the design of the Log-structured File System {(hF&83 Sprite
network operating system [26, 78]. LFS avoided positioning delays faeworkloads by
laying out new data on disk in a sequential log. Metadata structures weodipally flushed to
disk (in the log) to allow previously written data to be located and re-read.edegyin order to
reclaim disk space from deleted files, LFS required a “cleaner” to redquatially deallocated
regions of the log, which degraded performance under many work[8#&¢88].

DualFS [73] separates data and metadata storage—not unlike objedtchaster file
systems—»by writing metadata to a separate device using an LFS-style log, mitigatingrc
effects by eliminating bulky file data. Although—as with LFS—a special inode fifajs re-
quired to translate inode numbers to locations on disk, DualFS improves mepadatanance
by storing recently modified dentries and inodes close together in the log.

Although the cylinder group concept has been refined over the ytharbasic meta-

data structures and allocation strategies introduced by FFS still persisigaltigral file sys-

tems, such as ext3 [95]. As file system sizes have scaled more quickly dncdisk archi-
tectures, metadata structures have adapted. For example, file sizesdraasad while disk
block sizes have remained small—usually 4 KB—for efficient storage of dites! For large
files, this gives rise to extremely long block allocation lists enumerating the locatifike
data. Modern local file systems are exemplified by XFS [92], which replattecation lists
with extents—start and length pairs—to compactly describe large regions of disk.

Modern file systems have also introduced reliability features to streamline=tamst-
ery after a failure. As with most commonly used alternatives, XFS maintains-aiskjournal
file that it uses to log metadata updates that it is about to perform. In the efvarfailure,
the journal can be read to ensure that updates were successfullpraactly applied, or clean
up any partially applied updates. Although journals come with a performagaltg—disks
have to frequently reposition themselves to append to the journal, and etattatacupdate is
written to disk twice—they avoid the need for more costly consistency cheaaksgdfailure
recovery (which are increasingly expensive as file systems scale).

Many systems also implement a form sbft updatesin which modifications are
written only to unallocated regions of disk and in careful order to ensatehlk on-disk image
is always consistent (or easily repaired) [64]. The WAFL file systedj, [lbr example, uses a
copy-on-write approach when update the hierarchical metadata sasictuniting all new data
to unallocated regions of disk, such that changes are committed by simplyngpag@ointer to
the root tree node. WAFL also maintains a journal-like structure, but doesly to preserve
update durability between commits, not to maintain file system consistency. A simhaigee

is used by EBOFS, the object-storage component of Ceph (see Chapter 7

2.2 Client-Server File Systems

The desire to share storage resources and data in networked compwinogeents
has given rise to a number of client-server file systems. The most commauyates NFS [72]
and CIFS [38], which allow a central server to “export” a local file syste remote systems,
who then map it into their own namespace. Centralizing storage has facilitatetdetten
of specialized, high-performance storage systems and popularizeallsd-NAS—network
attached storage. However, the centralization inherent the client-seolgtecture has proved
a significant impediment to scalability, because all file system operations neuplobessed
by a single server. In large installations, administrators typically assigresubgtheir data
to specific servers, and map them into a single namespace by mounting multipdes samv
each client. While reasonably effective and widespread, this appoaacbause administrative
headaches when certain data sets grow or contract and require mamigxifition to other
servers.

Networked file systems typically relax consistency semantics in order torpeese
cache performance in a distributed environment. For example, NFS clieiteésilerdata back
to the server asynchronously, such that concurrent file accessditwer client hosts may not
always return the most recent copy of data. Similarly, clients typically cllehmetadatad. g.
as seen bgtal for a fixed interval to limit client interact with and load on the file server. This
relaxation of file system consistency can cause problems for many appigagtiecluding their

use in NFS-based environments.

10

2.3 Distributed File Systems

Distributed file systems attempt to address the fundamental load balancinggéind s
challenges inherent in client-server systems. Early distributed file systetsgenAFS [43],
Coda [85], and that found in Sprite [71]. These utilize a central seovevordinate file system
access, and issueasedo explicitly promise the validity of data (or metadata) provided to the
client cache for a specified period, while subsequatibackscan revoke the promise in the
event of a conflicting access. However, while Sprite simply disabled ogchithe event of
(relatively rare) write sharing, AFS adopts an alternative consistendghoonstrained by file
open and close instead of individual read and write events. In condBSt,(prior to version
4, which adds limited lease-like support for file “delegations”) is stateleskebign, sacrificing
consistency in the presence of data sharing.

Sprite partitions the file system among different servers by statically sempthe
namespace into “domains,” and dynamically mapping each to server. AFS sutilibgbrid
scheme that partitions files based on both their name and identifier among vokewasof
which is then assigned to a server. In both systems, partition boundagiesite to the user
through the lack of support fdink or atomicrename In contrast to these systems, Ceph aims
to provide a unified file system namespace and fully consistent POSIX seman

Distributed architectures frequently replicate data across multiple sexerslia-
bility and availability in the presence of failure. In the Harp [61] file systemyess employ
primary-copy replication and write-ahead logs to allow fast recovery irettemt of a node

failure. A range of storage subsystems use similar techniques to prolialgedlock-based

11

access to storage. Petal [56] provides a sparse virtual disk abstréwiibis managed by a
dynamic cluster of servers. FAB [82] employs a replica consistency gubbmased on major-
ity voting. Ceph similarly provides a distributed and consistent storage semitb (unlike
Petal) an object-based interface, a comparatively simple (relative to F}iya consistency
protocol, and greater scalability (see Chapter 6).

Much like local file systems leverage RAID for reliability, systems like Frangifgd]
exploit a reliable distributed storage-layer abstraction like Petal to build abdittd file sys-
tem. Boxwood [63] similarly provides a file service based on reliable, rephlicalock devices,
although it does so by first constructing a rich distributed B-tree datatsteucCeph takes a
somewhat analogous approach with its use of the RADOS abstraction togreliable and
scalable storage, although it uses an object-based (rather than llee#t}linterface (see Sec-

tion 2.3.3).

2.3.1 Wide-area File Systems

Many systems consider distribution of file system components over a widearea

even (in some cases) in a global environment. The xFS [99] file systednamsigvalidation-

based cache-consistency protocol to facilitate aggressive clieningadh certain cases al
lowing reads from peer’s caches [23, 22], to minimize costly communicatien wide-area
networks, though with a significant cost in complexity. The OceanStolgfi[BZystem aims
to build a globally available file storage service with erasure codes andtoloaadependent
routing abstraction. Pangaea [83] targets a similar wide-area environaggmgssively repli-

cating file contents where they are read, while relaxing replica consistédreng strong guaran-

12

tees are not explicitly required. All of these systems focus largely on minimeaty network
communication (in some cases at the expense of consistency) and scalabiligywide area;
high-performance access to in a clustered environment—where netamirkignication is rel-

atively cheap—is not a design goal as it is in Ceph.

2.3.2 SAN File Systems

Recognizing that most file 1/0 in inherently parallel—that is, /O to differenstfite
unrelated semantically—most recent “cluster” file systems are based oaditadea of shared
access to underlying storage devices. So-called SAN—storage dveaarkae-file systems are
based on hard disks or RAID controllers communicating via a fibre chéongmilar) network,
allowing any connected host to issue commands to any connected disk.

Most SAN file systems utilize a distributed lock manager (DLM) [51] to coordina
access to shared block storage. Additional steps are taken to limit thebpitybat lock con-
tention, exemplified by the partial distribution of block allocation in GPFS [8&heDsystems,
such as StorageTank [66], recognizing that contention for locksgihogefile system metadata
can limit scalability, utilize an auxiliary cluster of servers for managing file systetadata—

the hierarchical namespace, access control, and block allocation.

2.3.3 Object and Brick-based Storage

Recently, many file systems and platforms, including Federated Array 8({#&\B) [82],
PVFS [55], and pNFS [39] have been designed around clusterstwbrieattached storage

servers [31]. Like StorageTank, metadata is managed by an indepessateer (or servers),

13

but file 1/0 takes place by interacting directly with a cluster of storage serfedren termed
“bricks”) instead of fibre channel disks. This allows certain functionalisuch as low-level
block allocation decisions—to be distributed to the devices themselves.

Lustre [14], the Panasas file system [104], zFS [76], Sorrentq [93]a Minor [1],
and Kybos [107] are based on the closely-related object-based stpaagdigm [7] popular-
ized by NASD [33]. Instead of performing I/O in terms of small, fixed-sizeck&) data is
instead stored imbjectsthat have a name (typically taken from a flat 128-bit namespace),
a variable size (anywhere from bytes to gigabytes), and other pertabgtadata, such as
named attributes describing access permissions. Object-based storagecalbiy distributed
functionality like low-level block allocation or security capability enforcentertbe performed
by semi-intelligent devices, reducing contention on servers managing reetathimproving
overall system scalability.

Although these object-based systems most closely resemble Ceph, noeendidh
the combination of scalable and adaptable metadata management, reliabilitylataldeance
that Ceph provides. Lustre and Panasas in particular delegate rigsiigrier low-level block
allocation to OSDs, reducing the amount of file metadata, but otherwise do littbeptoite
device intelligence. With the exception of Sorrento, all of these systemspBeiteallocation
maps to specify where objects are stored, an approach that forcesdhement of the object
directory server(s) in any migration of data between storage devices, lirefficgency. Like
Ceph, Sorrento uses a function to describe data placement on stotsgamstead of relying on
traditional allocation tables. However, Sorrento’s hashed distributigrigéks Ceph'’s support

for efficient data migration, device weighting, and separation of replicasa failure domains

14

(see Chapter 5). Most importantly, Ceph’s functional specification t&f ldgout allows OSDs
to manage migration and failure recovery in a distributed fashion (see Cl&pte

Kybos leverages device intelligence to manage quality-of-service edg8®18 (SOme-
thing that Ceph does not do), and stores data using a network RAIDcptatith two-phase
updates (Ceph uses a simpler replication protocol). Ursa Minor providéstrébuted object
storage service that supports a range of redundancy strategiesdingalaplication and parity-
based encoding (RAID)—and consistency models, depending on applicaquirements. All
of these systems, however, have limited support for efficient distributéaliai management,

limiting their scalability and performance (see Chapter 4).

2.3.4 Non-POSIX Systems

A number of distributed file systems adopt alternative (hon-POSIX) fileesyén-
terfaces. Farsite [2, 25] federates a large number of unreliable tatickss into a distributed
file system providing Windows file service with Byzantine fault-tolerancetahlly, this does
not include support for files linked to multiple names in the hierarchy (soecétiard links”).
However, like Ceph, Farsite dynamically distributes management of the fiiensymmespace
among available servers; dynamic subtree partitioning is discussed inrgletatiéin Chapter 4.

The Sorrento [93] file system is POSIX-like, but—much like AFS—adoptdexee
consistency model that simplifies metadata management and update consisteagresence
of write sharing. Other systems simplify consistency more drastically: C8@artfanslates
the consistency problem into one of versioning by making shared files immutabile in

Venti [75], all data is considered immutable.

15

Although architecturally the Google File System [30] resembles object-tased
tems, it eschews standard file system interfaces entirely, and is optimizedrjotarge files

and a workload consisting largely of reads and file appends.

16

Chapter 3

Ceph Architecture

This chapter introduces the basic architectural features of Ceph.vEhallamperation
of the system is presented by describing the Ceph client, and its interactiovaniithis system

components while performing basic file operations.

3.1 Ceph

The Ceph file system has three main components: the client, each instankelf w
exposes a near-POSIX file system interface to a host or processstarotii OSDs, which
collectively stores all data and metadata; and a metadata server clustdr, mdnages the
namespace (file names and directories) while coordinating security, momtsiind coherence
(see Figure 3.1). | say the Ceph interface is near-POSIX becauseit dipgropriate to extend
the interface and selectively relax consistency semantics in order to degtebath with the
needs of applications and improve system performance (discussedionS2.2).

The primary goals of the architecture are scalability (to hundreds of pgetlaynd

17

Clients Metadata Cluster

e @ O @ Metadata operations
@:0:0:0:0:-0=0 N
QOO
________________________ < Metadata
i :_bf:,sl: Ichlientl i @//O storage
H s ibfuse !

Object Storage Cluster

i :

E i:'-_-__-_-":
! = !
:|| vis [fuse []i} [client | :
i Linux kernel 11 [myproc | |
[———————— | [m—

Figure 3.1: System architecture. Clients perform file I/O by communicating directly with
OSDs. Each process can either link directly to a client instance, or intgiiéich mounted file
system.

beyond), performance, and reliability. Scalability is considered in a vaoiedymensions, in-
cluding the overall storage capacity and throughput of the system, afarpance in terms
of individual clients, directories, or files. Our target workload may inelsdch extreme cases
as tens or hundreds of thousands of hosts concurrently readingoiramiting to the same
file or creating files in the same directory. Such scenarios, common in scieqfications
running on supercomputing clusters, are increasingly indicative of tanv&rgeneral purpose
workloads. More importantly, distributed file system workloads are inligregnamic, with
significant variation in data and metadata access as active applicationatarseéts change over
time. Ceph directly addresses the issue of scalability while simultaneously exchiegh per-
formance, reliability and availability through three fundamental design fesitaiecoupled data
and metadata, dynamic distributed metadata management, and reliable autonoibigetistr

object storage.

e Decoupled Data and Metadata—Ceph maximizes the separation of file system meta-
data management from the storage of file data. Metadata operatipag (ename
etc.) are collectively managed by a metadata server cluster, while clientscintiéra

18

rectly with OSDs to perform file 1/O (reads and writes). Object-based gtonas long
promised to improve the scalability of file systems by delegating low-level block allo
cation decisions to individual devices. However, in contrast to existifgctbased file
systems [14, 104, 31, 30] which replace long per-file block lists with shohject lists,

Ceph eliminates allocation lists entirely. Instead, a simple function is used to name the
objects containing file data based on inode number, byte range, and sstpitegy,

while a special-purpose data distribution function assigns objects to spsoifige de-
vices. This allows any party to calculate (rather than look up) the name aatioloof
objects comprising a file's contents, eliminating the need to maintain and distrijats ob

lists, simplifying the design of the system, and reducing the metadata clustdoaabrk

Dynamic Distributed Metadata Management—Because file system metadata opera-
tions make up as much as half of typical file system workloads [77], eftectieta-
data management is critical to overall system performance. Ceph utilizesshmeta-
data cluster architecture based on dynamic subtree partitioning [102]dativaely and
intelligently distributes responsibility for managing the file system directory ribya
among tens or even hundreds of MDSs. A (dynamic) hierarchical parpteserves lo-
cality in each MDS'’s workload, facilitating efficient updates and aggvessiefetching

to improve performance for common workloads. Significantly, the worklasttiloution
among metadata servers is based entirely on current access pattemisigaleph to
effectively utilize available MDS resources under any workload anieaemear-linear

metadata performance scaling in the number of MDSs.

19

¢ Reliable Autonomic Distributed Object Storage—Large systems composed of many
thousands of devices are inherently dynamic: they are built incrementadiygtiow and
contract as new storage is deployed and old devices are decommisslenieg; failures
are frequent and expected; and large volumes of data are createdi, mogaleleted. All
of these factors require that the distribution of data evolve to effectivdiyeuavailable
resources and maintain the desired level of data replication. Ceph delexgtessibility
for data migration, replication, failure detection, and failure recovery toccthster of
OSDs that is storing the data, while at a high level, OSDs collectively proviiege
distributed and reliable object store to clients and metadata servers. Thiselpallows
Ceph to more effectively leverage the intelligence (CPU and memory) fresezach

OSD to achieve reliable, highly available object storage with linear scaling.

3.2 Client Operation

| introduce the overall operation and interaction of Ceph’s componetgsimter-
action with applications by describing Ceph’s client operation. The Cephtclims on each
host executing application code and exposes a file system interfacditmépps. In the Ceph
prototype, the client code runs entirely in user space and can be egdagdser by linking to it
directly or as a mounted file system via FUSE (a user-space file systenagarEach client
maintains its own file data cache, independent of the kernel page or baffees, making it

accessible to applications that link to the client directly.

20

3.2.1 File I/O and Capabilities

When a process opens a file, the client sends a request to a node in thellvdder
(see Section 4.3.1). An MDS traverses the file system hierarchy to tratigafile name into
the file inode which includes a unique inode number, the file owner, mode, size, and othe
per-file metadata. If the file exists and access is granted, the MDS reterimsotthe number,
file size, and information about the striping strategy used to map file data intot@bj€he
MDS may also issue the clientaapability (if it does not already have one) specifying which
read or write operations are permitted. Capabilities currently include foucditsolling the
client’s ability to read, cache reads, write, and buffer writes. In the éutaapabilities will
include security keys allowing clients to prove to OSDs that they are autkidozead or write
data [58, 69] (the prototype currently trusts all clients). involvement in fikei$ limited to
managing capabilities to preserve file consistency and achieve propantgama

Ceph generalizes a range of striping strategies to map file data onto a seguden
objects. Successivatripe unit byte blocks are assigned to the fisttipe countobjects, un-
til objects reach a maximurobjectsizeand we move to the next set sfripe_countobjects.
Whatever the layout (by default Ceph simply breaks files into 8 MB chyaksadditional field
specifies how many replicas are stored of each object.

To avoid any need for file allocation metadata, object names are consthycte-
catenating the file inode number and the object number. Object replicasearaghigned to
OSDs using CRUSH, a globally known mapping function (described in det&hapter 5).

For example, if one or more clients open a file for read-only access, ab dfbnts them the

21

capability to read and cache file content. Armed with the inode number, layulifjla size,
the clients can name and locate all objects containing file data and read direotlyhie OSD
cluster. Any objects or byte ranges that don't exist are defined to bfiles”, or zeros. Sim-
ilarly, if a client opens a file for writing, it is granted the capability to write withfledhg, and
any data it generates at any offset in the file is simply written to the appropiifet on the
appropriate OSD. The client relinquishes the capability on file close aniteiothe MDS with
the new file size (the largest offset written), which redefines the sabjetts that (may) exist

and contain file data.

3.2.2 Client Synchronization

POSIX semantics sensibly require that reads reflect any data previetggn, and
that writes are atomid.(e. the result of overlapping, concurrent writes will reflect a particular
order of occurrence). When a file is opened by multiple clients with either multipters or a
mix of readers and writers, the MDS will revoke any previously issued caahing and write
buffering capabilities, forcing all client 1/O to be synchronous. Thagégh application read or
write operation will block until it is acknowledged by the OSD, effectivelygiotg the burden
of update serialization and synchronization with the OSD storing each oBjgueving atom-
icity is more complicated when writes span object boundaries. The prototypently uses a
simple locking mechanism to achieve correct serialization, although an diverrmeethod that
implements something closer to a true transaction is under consideration.

Not surprisingly, synchronous I/O can be a performance Killer fotiegons, par-

ticularly those doing small reads or writes, due to the latency penalty—atdeagsbund-trip

22

to the OSD. Although read-write sharing is relatively rare in general-parpmrkloads [77], it
is more common in scientific computing applications [98], where performandeeis critical.
For this reason, it is often desirable to relax consistency at the expeagebstandards con-
formance in situations where applications do not rely on it. Although Cepbostgosuch relax-
ation via a global switch, and many other distributed file systems punt on th&s[BSu72, 93],
this is an imprecise and unsatisfying solution: either performance sufecensistency is lost
system-wide.

For precisely this reason, a set of high performance computing extsnticthe
POSIX I/O interface have been proposed by the high-performanceuwtorgHPC) commu-
nity [103], a subset of which are implemented by Ceph. Most notably, fhekale an0_LAZY
flag for openthat allows applications to explicitly relax the usual coherency requirements f
a shared-write file. Performance-conscious applications who manaigere consistency
(e. g. by writing to different parts of the same file, a common pattern in HPC workI{a&]%
are then allowed to buffer writes or cache reads when 1/O would othebeigerformed syn-
chronously. If desired, applications can then explicitly synchronize withadditional calls:
lazyio propagatewill flush a given byte range to the object store, wideyio_synchronizewill
ensure that the effects of previous propagations are reflected inbsgaguent reads. The latter
is implemented efficiently by provisionally invalidating cached data, such theesuent read
requests will be sent to the OSD but only return data if it is newer. The Ggpthronization
model thus retains its simplicity by providing correct read-write and sharégd-semantics be-
tween clients via synchronous /O, and extending the application interfaetatoconsistency

for performance conscious distributed applications.

23

3.2.3 Namespace Operations

Client interaction with the file system namespace is managed by the metadata serve
cluster. Both read operations.(g. readdir sta)) and updatese(g. unlink chmod are syn-
chronously applied by an MDS to ensure serialization, consistencgat@@curity, and safety.
For simplicity, no metadata locks or leases are issued to clients. For HPC adskloparticu-
lar, callbacks offer minimal upside at a high potential cost in complexity.

Instead, Ceph optimizes for the most common metadata access scenarasldik
followed by astat of each file €. g. 1s -1) is an extremely common access pattern and no-
torious performance Killer in large directories.réaddirin Ceph requires only a single MDS
request, which fetches the entire directory, including inode contents. eByull, if aread-
dir is immediately followed by one or morgas, the briefly cached information is returned;
otherwise it is discarded. Although this relaxes coherence slightly in thiatenvening inode
modification may go unnoticed, Ceph can optionally make this trade for vastly weqperfor-
mance. This behavior is explicitly captured by teaddirplus[103] extension, which returns
Istatresults with directory entries (as some OS-specific implementatiogestdir already do).

Ceph can allow consistency to be further relaxed by caching metadata,lomgzeh
like earlier versions of NFS, which typically cache for 30 seconds. Wewehis approach
breaks coherency in a way that is often critical to applications, such ag tigingstat to
determine if a file has been updated—they either behave incorrectly, ampewditing for old
cached values to time out.

Ceph opts instead to again provide correct behavior and extend theaagenf in-

24

stances where it adversely affects performance. This choice is masgydlristrated by astat
operation on a file currently opened by multiple clients for writing. In ordeetarn a correct

file size and modification time, the MDS revokes any write capabilities to momentargy sto
updates and collect up-to-date size and mtime values from all writers. Thestigalues are
returned with thestatreply, and capabilities are reissued to allow further progress. Although
stopping multiple writers may seem drastic, it is necessary to ensure pesjaizability. (For

a single writer, a correct value can be retrieved from the writing client withaterrupting
progress.) Applications who find coherent behavior unnecessérims of a POSIX inter-
face that doesn't align with their needs—can opt to use thestatiite operation [103], which

takes a bit mask specifying which inode fields are not required to be eather

3.3 Communication Model

Ceph adopts an asynchronous messaging model for inter-node comtimmida
contrast to systems based on RPC, outgoing messages are queued fdellatey without
blocking, and exchanges need not (and generally do not) consisjoést and response pairs.
This allows for greater flexibility and efficiency in data and information flowfagilitating
asymmetric exchanges.

The communications model assumes ordered fail-stop delivery of medsatge=en
any given pair of nodes. That s, all sent messages will be delivertbeiinentirety in the order
they were sent. The implementation currently utilizes TCP, although the intésfacastructed

to easily support alternative transports such as RDS [70]. In the efentommunications

25

failure (e. g. a transport error, such as a break in an underlying TCP connedti@dender is

asynchronously notified of the error.

26

Chapter 4

Distributed Metadata Management

As demand for storage has increased, the centralization inherent insxieset- stor-
age architectures has proven a significant obstacle to scalable paréeni@ecent distributed
file systems have adopted architectures based on object-based dodsaxkstorage, distribut-
ing low-level block allocation decisions to the storage devices and simplifyisngyfstem meta-
data. This lends itself well to architectures in which clients interact with a aeparetadata
server (MDS) to perform metadata operatioasdq. openrenamé@ while communicating di-
rectly with storage devices (OSDs) for file I/0.

In systems that decouple data and metadata access, efficient metadatiaguece
becomes critical to overall system performance. Prior workload stusigiawvn that metadata
operations account for as much as 30-70% of all file systems operafidhsWhile conven-
tional write buffering and data prefetching techniques reduce interaafibnstorage devices
for data I/O, metadata operations are frequently synchronous. Fubdtause data is managed

independently from metadata, the metadata server workload consists afrtigdy eof small

27

reads and writes to relatively small data structures, making it important for i td optimize
its own 1/O with underlying storage devices.

As distributed file systems scale to petabytes of data and beyond, the disiributio
of workload becomes difficult. System capacity and workloads usually gnorementally
over time, and can vary independently, making static partitions of the file syeterdividual
servers inefficient: individual nodes may become overloaded while ogitidle. Typical
server workloads vary on a daily basis, as demand shifts throughodajhi27], and in many
systems—compute clusters in particular—workloads may vary wildly as diffgsbs start and
finish [98]. Such variance in file system workloads demaamisptiveapproaches to metadata
management in order to effectively utilize resources at scale [25, 19102].

The combined demand for metadata performance and dynamic load balaoségy p
a significant challenge to system reliability. Storage systems, by their naemend strong
data safety, while distributed systems introduce more system components thiilmijost
conventional file systems employ some fornjafrnal, which provides a sequential log of op-
erations that allows fast recovery after a failure. In a dedicated MB\8ever, the large number
of small updates leads to a pathological I/O profile when combined with cbomahmetadata
storage and journaling approaches. Alternative techniques basedftaipdatesequire careful
ordering of updates [64], limiting parallelism and placing an even greatdehwon the storage
subsystem.

| present a metadata management approach addressing the uniqumaect re-

quirements of a clustered metadata server that is capable of toleratingrgrbice crashés

1The MDS cluster is tolerant of any number or combination of MDS nodshers, provided there is sufficient
opportunity for new MDS processes to recover in their place. The cldstes not tolerate Byzantine failures,

28

In contrast to previous work in this area, my architecture and implementatioriaimaimeta-
data performance before, during, and after failure by simultaneoudiessing the efficiency
of metadata I/O, cluster adaptability, and failure recovery.

Ceph’s metadata storage differs from that in conventional file systems irkéwo
ways. First, the relatively small per-fileode metadata structures in our environment (due in
part to our use of an object-based storage layer that minimizes allocationatzdtathke it
practical to embed them in directories with the directory entrien{rieg that refer to them,
while support for multiple pathnames referencing a single file (hard linkgemsgpved through
an auxiliary table. Based on prior study and my own analysis of file systeqpshots and
workloads, Ceph stores each directory’s contents (dentries and datbatbdes) together in
the shared object storage pool. This facilitates inode prefetching byigxglthe high degree
of directory locality present in most workloads—with negligible additional 163te-and fa-
cilitates an efficient subtree-based load partitioning strategy by embedtimgtadata in the
hierarchical namespace.

Second, Ceph utilizes per-metadata server update journals that aredattogeow
very large, to hundreds of megabytes or more. This allows it to distill thetsffef multiple
updates and short-lived files into a much smaller set of updates to the primtagateestruc-
tures, minimizing inefficient random-access 1/0O, while facilitating streamlinedvesy and
subsequent MDS performance after a node failure.

Finally, |1 adopt a subtree-based partitioning strategy [25, 102] to dyradigidis-

tribute workload. A hierarchical approach preserves locality within &4I$ workload, while

wherein processes behave incorrectly or maliciously.

29

selective metadata replication preserves cluster throughput and availalhibty a subset of
nodes fail. Ceph’s approach redefines the directory hierarchy in tefrglisectoryfragments
facilitating fine-grained load distribution and simple, efficient storage.

In this chapter | focus on thiailure recovery, metadata I/O efficiency, andadapt-
ability implications of the combined approach to metadata storage, journaling, aktbagr
distribution and relate my experiences constructing a working implementationalyze a
variety of static file system snapshots and workload traces to motivate MEi§ndand per-
formance analysis, present a simulation based-analysis of metadata pagiapproaches to
demonstrate the architectural advantages of a dynamic subtree-bgsedchy and evaluate

my implementation under a range of micro-benchmarks, workload tracefiamd scenarios.

4.1 Background and Related Work

Metadata in file systems presenting a POSIX file system interface is normais rep
sented by three basic structures: inodes, dentries, and directonide Be directory metadata
(e. g.modification time, size, data location) is storedriades Eachdirectoryhas some number

of file names or directory entriedéntrieg, each referencing an inode by number.

4.1.1 Local File Systems

In the original Unix file system, as well as BSD’s FFS [65]—whose bassgigte
most later file systems have largely preserved—inodes were stored inital#esrved regions

on disk, their precise location indicated by their inode number. In contraBEE[29] embeds

30

most inodes inside directories with the dentries that refer to them, as welliag sa&ps to keep
each directory’s file data together on disk. Despite significant perfarenb@nefits (10-300%),

few file systems since have adopted similar embedding techniques. This mag tee@FFS’s

need to maintain a map of all directories to suppouttilink files(usually termedard linkg—
inodes which are referenced by multiple filenames. In contrast, our metstata architecture
embedsll inodes and maintains a much smaller table that indexes only those directories with
nested multilink files (we consider table utilization in detail in Section 4.5.2.3).

The Log-Structured File System (LFS) [26, 78] stores all data and nmetada se-
guential log for improved write performance. However, the “cleane€tus reclaim space—
by rewriting partially deallocated log segments to new regions of disk—cam ésignificant
overhead for many workloads [87, 88]. DualFS [73] separates ddtmatadata management—
much like object-based cluster file systems—by writing metadata to a separete g&wng an
LFS-style log, mitigating cleaner effects by eliminating bulky file data. Although-wih
LFS—a special inode map file is required to translate inode numbers to locatiatisk, Du-
alFS improves metadata locality by storing recently modified dentries and inlodesogether
in the log. hFS [113] combines elements of FFS and LFS by storing metadatareiidfile
data in an LFS-like log and large file data in FFS-style allocation groups, atialaeffects of
many operations to be combined into an atomic segment write (as in LFS) whilevaising
the need for a cleaner entirely.

Most modern file systems [92, 95] empl@urnaling to maintain file system con-
sistency after a crash. Metadata (and, in certain cases, data) updafiestavritten to a log-

structured journal before being applied to the regular on-disk metadatwtes. Although

31

journals come with a performance penalty—disks have to frequently repo#igommselves to
append to the journal, and each metadata update is written to disk twice—thdyttevoeed
for more costly consistency checks during failure recovery (whiclingreasingly expensive as
file systems scale). Many systems also implement a forspfblupdatesin which modifications
are written only to unallocated regions of disk and in careful order torertbat the on-disk
image is always consistent (or easily repaired) [40, 64]. Ceph’'s M@8bines elements of

LFS and journaling, adapted to a distributed environment.

4.1.2 Distributed File Systems

Distributed file systems must partition management of the overall file system hames
pace across multiple servers in order to scale. | discuss prior apgacterms of the parti-

tioning strategy to introduce the efficiency issues involved.

4.1.2.1 Static Subtree Partitioning

The most common approach is to statically partition the directory hierarchysaigha
each subtree to a particular server, in some cases migrating subtreei bémmes necessary
to correct load imbalance—this approach is taken by Sprite [71], Stoaagd®6], PanFS [68],
and others. However, because partition boundaries are typically visiblegih the lack ofink
and atomicrenamesupport, these systems resematehoccollections of NFS or CIFS [38]
servers. Static partitions fail to account for the growth or contractiondifigiual subtrees over
time, often requiring intervention of system administrators to repartition or (mescases)

manually rebalance data across servers. Although StorageTank alR8 Palumes or file sets

32

are smaller than the physical server capacity and can be migrated bewveers sthe unit of

load distribution remains coarse and fixed.

4.1.2.2 Hash-based Partitioning

To limit workload imbalance associated with static subtree partitioning, Lusttess ¢
tered MDS distributes directories randomly among “inode groups,” eagthimh is assigned
to a server [14]. This provides a finer distribution of data and workloaddzorrelating the
partition from the hierarchy. A number of other distributed file systems usaidy random
distribution: Vesta [20], Intermezzo [13], RAMA [67], and zFS [76] ladish the file pathname
and/or some other unique identifier to determine the location of metadata an@/oAddong
as such a mapping is well defined, this simple strategy has a number of agbsar@dients can
locate and contact the responsible MDS directly and, for average veoikland well-behaved
hash functions, requests are evenly distributed across the clustdref-inot-spots of activity
in the hierarchical directory structure, such as heavy create activitgimmgée directory, do not
correlate to individual metadata servers because metadata location leatiomito the direc-
tory hierarchy. However, hot-spots consisting of individual files ddhaverwhelm a single
responsible MDS.

More significantly, distributing metadata by hashing eliminates all hierarchieal lo
cality, and with it many of the locality benefits typical of local file systems. Sonstegys
distribute metadata based on a hash ofdinectory portion of a path only to allow directory
contents to be grouped on MDS nodes and on disk. This approach fasiliaetching and

other methods of exploiting locality within the metadata workload. Even so, toys835IX

33

directory access semantics, the MDS cluster must traverse prefix {@oksectories contain-
ing a requested piece of metadata to ensure that the directory permissianthallurrent user
access to the metadata and data in question. Because the files and dirémtatexs on each
MDS are scattered throughout the directory hierarchy, a hashed rteethistaibution results in
high overhead, either from a traversal of metadata scattered on multipkyseor from the
cache of prefixes replicated locally. Prefix caches between nodesxhilliea high degree of
overlap because parent directory inodes must be replicated for eB&hgdgrving one or more
of their children, consuming memory resources that could cache other data

Approaches like ANU (adaptive nonuniform randomization) [108] seakigtribute
fixed file sets €. g. Lustre’s inode groups) among servers using a hash-like function that is
dynamically adjusted based on measured server load. As with static suattidems, ANU
relies on an existing fixed partition of metadata into file sets; in contrast, Ce{ip&sbalances
load using a flexible dynamic partition and heuristics similar to those in ANU to ptéwad

thrashing.

4.1.2.3 Lazy Hybrid

Lazy Hybrid (LH) metadata management [15] seeks to capitalize on the tsecofedi
hashed distribution while avoiding the problems associated with path trabgrea¢rging the
net effect of the permission check into each file metadata record. Liketwbkking approaches,
LH uses a hash of the file’s full path name to distribute metadata. To alleviatetéetially
high cost of traversing paths scattered across the cluster, LH used-ardty access control

list that stores the effective access information for the entire path tedweith the metadata

34

for each file. It has been shown that this information can usually besepted very compactly
even for large general-purpose file systems [74]. LH need only sawbe path when access
controls need to be updated because an ancestor directory’s aecessspns are changed,
affecting the effective permissions of all files nested beneath it. Similarignéng or moving
a directory affects the path name hash output and hence metadata locadibfile$ nested
beneath it, requiring metadata to be migrated between MDSs. Previous trissimas shown
that changes like this happen very infrequently [77] and it is likely that thidyaffect small
numbers of files when they do occur. Moreover, it is possible to pertbisrupdate at a later
time to avoid a sudden burst of network activity between metadata serydrayimg each MDS
maintain a log of recent updates that have not fully propagated and thgnupdate nested
items as they are requested.

LH avoids path traversal in most cases, provided certain metadata opsi@tgosuffi-
ciently infrequent in the workload. Analysis has shown that update epgbe amortized to one
network trip per affected file; as long as updates are eventually applies ¢qoarkly than they
are created (changes to directories containing lots of items could triggetiptiyemillions of
updates with a single update), LH delivers a net savings and good #italdbke other file
hashing approaches, it avoids overloading a single MDS in the presédaectory hot-spots
by scattering directories. However, in doing so the locality benefits arevuie the system
remains vulnerable to individually popular files. More importantly, the low tpdsaerhead es-
sential to LH performance is predicated on the low prevalence of specifadata operations,

which may not hold for all workloads.

35

4.1.2.4 Dynamic Subtree Partitioning

A few research file systems have recently adomtgaamicsubtree-based metadata
partitions, in which subtrees of the hierarchy are redistributed acrdsst@icof servers in re-
sponse to the current workload. The directory service in Farsite ja%dmically redistributes
subtrees described by a hierarchical file identifier, but unlike Ceph, imgsies Windows (non-
POSIX) semantics, with no support for hard links. More significantlysiamlso relies on a
hierarchical file identifier in order to minimize growth of its description of theentr metadata
distribution; in contrast, Ceph requires no global state to specify the nacegartition, im-
proving scalability. Envoy [79] allows client hosts to claim management dfreeb based on
their current workload through a distributed locking strategy. Neithexelver, evaluates the
comparative benefits of a subtree-based approach quantitativelyo mither present or evalu-
ate an implementation with working failure recovery. The Farsite MDS utilizesdependent
atomic-action state machine substrate, which the authors suggest couldgoatedevith Far-
site’s existing Byzantine-fault tolerant substrate; the performance implisatibdoing so are
not discussed. A recovery procedure for Envoy is describedhdiugvaluated nor considered

in the context of system performance.

4.1.2.5 Metadata Storage

Distributed approaches to metadata management commonly utilize a shared storag
subsystem, facilitating load balancing and failure recovery. Howevistimy approaches take
minimal steps to optimize the I/O generated by the metadata server. Becausenheistdata in
each inode group is stored in a modified ext3 file system, the large volume ategdcthposes a

36

significant random 1/O load due to the use of conventional journaling ardkistorage. PanFS
and Envoy, two other object-based file systems, both store each file’satetslattributes on

the file data objects, subjecting the distributed object store to a similar workload.

| describe a combined metadata management strategy involving embeddes, inode

large MDS journals, and dynamic subtree partitioning specifically in the coofaxetadata

I/O efficiency, metadata partition efficiency and adaptability, and sustaimddrpance in the
presence of arbitrary node failure. Ceph’s evaluation is based onuthe af general purpose

file system usage—content snapshots and workload traces—andtievabfdoth normal op-

eration and failure recovery of a working implementation.

4.2 Metadata Storage

Metadata, like data, is stored by a cluster of object storage devices j@&bD&rm a
replicated, reliable object storage pool, described in Chapter 6. A variether reliable, dis-
tributed storage layers have been discussed in the literature [1, 3M®2Z,A7]; in this chapter
I ignore the details of object storage, assuming only that performanceesl loea the behavior
of modern hard disks—characterized by expensive seeks and lyjgargel throughput—and
focus instead on minimizing the I/O workload generated by the MDS by favadogiential
over small, random 1/Os.

The full metadata contents of each directory (file names and inodes) aed §tca
single object whose name corresponds to the directory’s inode nurststroan in Figure 4.1.

Each MDS also maintains a journal that contains recently created or modifiadate not yet

37

hosts 201
mtab | 202
passwd | 203 |

'
1
1
:
i| usr | 102
'
1
1
1
'
1

var 103 ' |
vmlinuz | 104] t | bin !

i include| 318 |
"""""""""""" | lib !
[|

! Storage Object [| Dentry Inode

Figure 4.1: All metadata for each directory, including file names (dentries) and the srtbeg
reference, are stored in a single object (identified by the directorydeinamber) in the shared,
distributed object store. Inode 1 is the root directory.

committed to the directory storage objects. MDS journals are striped over nxadysiize (but
large) objects with sequential identifiers. Journals grow by spilling ontoaigects, and are
trimmed by deleting older objects.

Normally, the MDS submits a separate I/O operation for each journal entmdar o
to minimize the latency associated with any individual update operation. Umder Hoads,
however, journal throughput can still be limited by the storage layer duestathe number of
small (though sequential) write operations. To avoid this, the MDS will writenaldlata to the
object store in larger increments only when it is necessary to keep thalld¥@rrate below a
fixed (tunable) maximum, improving overall throughput (and, correspghgiaverage latency)

under heavy load.

38

4.2.1 Embedded Inodes

File path resolution is performed by loading the directory inode and thenydiemtr
each path component to determine the file’s inode number. Although mostdtlensy try to
keep inodes near the directory entries that reference them, multiple reaatiops are typically
required. This can be problematic for many common usage patterns, sackealslir followed
by astaton every file (as withL.s -1 or find), as eaclstatneeds data at a different location
on disk. Moreoverstatoperations typically occur in the order dentries appear in the directory,
which rarely corresponds to the order inodes occur on disk.

The key reason that inodes and dentries exist as independent ssusttirat POSIX
file systems allow multiple dentries (and thus, multiple file names) to refer to a single ino
(file). In practice, however, multiple “hard links” to individual files ardatevely rare, and are
used primarily for temporary files. That is, inodes rarely have more thatimkfor very long
(see Section 4.5.2.3).

The efficiency problems associated by scattered inodes are avoidexnihy slentries
and inodes together. | call one (usually the only) dentry referring tb @sade theprimary
dentry, and store the inode adjacent to it, inside the directory object. When a dirésto
loaded off disk to perform a single lookup oreaddir, the dentries and inodes for the entire
directory are fetched into the MDS cache in a single read operation. @Giatanalysis of file
system workloads has shown a high degree of directory locality [77088ktreamlined inode
prefetching results in an improved I/O profile with minimal cost; the increasedtdiry size

does not significantly effect overall access time (see Section 4.5.2®prafetched metadata

39

are placed low in the cache LRU list to avoid displacing other metadata in thengat.

4.2.2 Remote Links and the Anchor Table

Any additional dentries that reference an inode are calbedbte dentriesand are
stored with the inode number for the inode they refer to, as with dentries ireatianal file
systems. However, such links may exist anywhere in the file system Higregtative to the
primary dentry, whose location may also change. | introduce an auxdi@iior tablewhich
logically takes the place of a conventional inode table by allowing inodes tachéel by their
inode number. However, we populate the table by @mighoringthose inodes with more than
one link (. e. only those inodes we may need to locate by number).

To anchor an inode, all ancestor inodes must either already exist dded & the an-
chor table, which consists of small, fixed size recoedehorg of the form(ino, parent nre f)—
backpointers that eventually link each anchored inode back to thelnmddentifies the inode
in question parentidentifies its immediate parent directory by inode number and fragment id
(see Section 4.3.6), amtefis a reference count that includes the inode anchor and any parent
pointers from other anchor table records. Thus, given the inode nuohlae anchored inode
we can retrieve the path by successively looking up parents until a kimmale . e. one that
an MDS already has in its in-memory cache) or the root directory is reached

A key property of an anchor table consisting of directory backpointersisa direc-
tory rename that may effect the path for an unbounded number of atthwdes €. g. near
the root of the hierarchy) requires only a single anchor table updateatrion. That transac-

tion will include the backpointer change for the renamed directory, aaeéercount decrement

40

on the old parent, and count increment on the new parent. It may also énttiadsubsequent
removal of ancestors whose counts have reached zero, or the ins#rtie new parent and its

ancestors if they were not already present in the table.

4.2.3 Large Journals

In most file systems, the journal acts as a temporary staging area to facilifiate sa
updates of often complicated metadata structures without fear of corrugtiomnal contents
are typically discarded as soon as those updates complete. In contrasaskedfile systems
such as LFS [26, 78] and hFS [113] use the log as the primary storagéusér, citing its supe-
rior write performance. To manage deletion and deallocation, log-baseshsy—with notable
exception of hFS—typically introduce a “cleaner” process to rewrite glgrtdaallocated seg-
ments so that disk space can be reused.

Ceph’s metadata manager takes a hybrid approach. Updates are ifiest wr an
MDS journal, and the affected metadata is marked “dirty” and pinned in the bHa8e. Al-
though we eventually commit the change to the primary per-directory metadigetspbve
delay this until the relevant entry must be trimmed from the tail of the journal allod the
journal to become very large (hundreds of megabytes or more). Mastisamtly, each jour-
nal’s contents are reflected by the MDS'’s in-core state; changes arectatenitted to the
primary metadata structures without requiring the journal to be re-readtfakFS’s cleaner).
MDS journals can be viewed as a means of recovering the contents ohedels in-memory
metadata cache—and indirectly the file system state—thereby allowing the MDI&gbaon-

ventional techniques like delayed writeback and group commit to a clusteteagsfor im-

41

proved performance without compromising safety.

Large journals reduce the number of directory updates in two key walyst, i
most workloads, individual metadata objects are updated multiple times befooening idle.
Similarly, most new files are temporary and are removed shortly after crga#oi7]. As the
journal is trimmed and changes are committed to the directory objects, all but gteenent
update for any given object can be ignored; for deleted files, all @emtries are moot. Second,
all updates to a given directory over the lifetime of the journal are effelgt;ommitted—and
the corresponding in-memory copies marked “clean"—in a single updatsatrion.

This strategy allows the MDS to optimize its 1/O profile by streaming most updates
to disk in an efficient, sequential manner while also limiting the number of ranqumtates to
per-directory metadata objects. At the same time, unlike logging file systems IfkamdrhFS,
we also optimize future read access by grouping dentry and inode metgdiitadiory.

Aside from enabling failure recovery, large journals allow a recovevid to prime
its cache with a large quantity of warm metadata. This avoids an inefficienffrstiar a cold
cache and the large number of read I/Os that would be required to Emqilyae-populate it,

preserving MDS performance after recovery.

4.3 Adaptive Workload Distribution

As file systems scale it becomes necessary to distribute workload over multiple ma
chines in order to achieve acceptable performance. Most clusteregdilens use a static

subtree partition, in which fixed portions of the file system hierarchy asigm@ed to different

42

servers. The problem with static partitions is that neither file system contentgonkloads are
static: both the storage needs for and client access to different pdhis bierarchy will grow
or contract over time, often requiring the intervention of system adminissr&dorepartition or
re-balance file systems across devices or servers. Further, ttavegi@tions in workload can
lead to wide variations in server load, preventing the effective utilizatiowaifable hardware
resources.

Ceph capitalizes on the benefits afiyjnamicsubtree-based partition to achieve scal-
able performance. Subtrees of the hierarchy are adaptively migrat@ddyenodes to correct
load imbalance, while favoring a coarse partition in order to preserve lo@étityn the work-
load managed by each MDS. This typically allows client nodes to interact witheoamall
set of servers, while also limiting the amount of ancestor metadata that musplated to
support consistent path resolution and access control.

Farsite and Envoy also utilize a subtree-based partition and dynamic loabuistr
tion [25, 79], although neither provides a comparative evaluation ofrdimpartitioning versus
other approaches. More importantly, none of the prior research in #afacuses on the impli-
cations of MDS node failure on metadata partitioning (or vice-versa). Irsétgon, | focus on
the construction of a distributed metadata cache that preserves implemeritapbaity while

facilitating scalabilityandtolerating arbitrary MDS node crashes.

4.3.1 Subtree Partitioning as Soft State

Ceph's architecture allows an arbitrary and adaptive subtree-basgtiop of the

file system across a dynamic cluster of metadata servers, while providimgla semantic

43

namespacei.(e. full support for atomic rename and hard links, even when spanningessbtr
currently managed by different MDS nodes). At the same time, Ceph allotnemaxly fine-
grained load distribution when necessary. Instead of defining subtréesns of directories
(which makes directories the indivisible unit of load distribution), Ceph allasge or busy
directories to fragment, and defines the partition in terms of individual dingfitagments (see
Section 4.3.6). Each subtree is defined by the directory fragment at ttsarabzero or more
bounds where each bound is the root directory fragment for a nested subMeany given
subtree boundary, the directory inode belongs to the parent subtiest@ited in the containing
directory), while the directory fragment—and the metadata it contains—bglunthe child
subtree.

A distinguished MDS ifids(Q is always responsible for the root inode. Beyond that,
metadata is partitioned in terms of metadata that currently exists in the clusteritivelia-
memory cache. Because the cached subset is a connected subtreevefrdichierarchy, this
simultaneously partitions the total file system. Any given piece of metadatat(diydagment,
dentry, or inode) occupies a specific position within the file system higratghvirtue of
Ceph’'s embedded inodes (see Section 4.2.1). This allows a subtree p#otgiomultaneously
partition both namespace (directory fragment and dentry) and file (inoétddata. Every
metadata item present in an MDS’s in-memory cache is egth#roritative—if it falls within a
subtree of the namespace that is locally managed—eplaca of an item managed by another
MDS.

In contrast to many other distributed architectures [14, 25, 44, 68,tAdje is no

central management or description of the overall partition. The partitiomdiad metadata

44

’ e — root inode,
/ directory
subtree 7 / (Y
\ inodes —" " i
V f s A
ancgstor
| replicas
— 7
. T local
P \ 4 ', Subtrees -
e A \ s [

aveseses”

fragmented directory

Figure 4.2: Structure of the metadata cache as seen by a single MDS. Metadata is partitione
into subtrees bounded by directory fragments. Each MDS replicatestanosetadata for any
locally managed subtrees. Large or busy directories are be broken iitiplenragments,

which can then form nested subtrees.

45

is “soft state” in that it is described only by the cluster’s collective in-menuaighe (and, by
extension, journal contents). Each MDS is aware only of the authorityntadata present
in its own cache. Clients cache subtree boundaries as they encounteotb#fitiently direct

metadata requests.

4.3.2 Metadata Replication

Metadata replication serves two key purposes. First, it allows each nadehe a
connected hierarchy, which is important for maintaining cache consistdfietadata is also
replicated for availability—both when the cluster is under heavy load andahsubset of
nodes fail.

Ceph imposes foudistributed cache constrainthat are critical for failure recovery
and simplify normal cache operations: (1) all cached metadata must beeaktaxckhe root
of the hierarchyi(e. all ancestors must also be cached); (2) any directory fragment bound
for an authoritative subtree, e. the root directory fragments of any child sub-trees, though
not necessary they dentries they contain, must have local replicathe(@uthority for any
replicated metadata must be known; and (4) all replicas must be known bytierity.

Constraints (1) and (2) ensure that path resolution can start at aey ad that an
MDS resolving a path will know when traversal reaches a subtree laoyun&eplicating an-
cestor metadata further ensures that, for example, the failurels®—which manages the root
directory—will not prevent path traversal on other nodes managingaasibtrees. Similarly,
popular directories are flagged for replication, allowing most read-onjyests to be serviced

even if the authoritative MDS has failed.

46

Constraints (2) and (3) ensure that it will be clear to which MDS we shoeliegcite
if path traversal reaches the edge of an authoritative subtree: théibguiirectory fragment
replica will indicate the authority for the nested subtree. Note that replicatiiiggetory frag-
ment does not imply replication of its contents (dentries and inodes)—onlshia¢plica will
remain informed of the fragment’s authority. Finally, constraint (4) facilitdoeking when
operations affect replicated metadata, and ensures authoritative metaddta expired from

the cache after replicas are destroyed.

4.3.3 Locking

Each piece of replicated metadata is protected by a lock—a simple distributed state
machine that controls whether an MDS can read or modify a given setd.fieocking is fine-
grained: although each dentry is protected by a single lock (controllinghehthat element of
the namespace can be read), each inode has five locks, each con&dliifegent set of related
fields (. g.link count and anchor status; file ownership and mode; file sizerdimde directory
fragmentation). Lock acquisition is ordered fgcktypeob ject to avoid deadlock.

Each lock’s state machine is constructed to minimize MDS interaction for the ex-
pected usage of the protected fields. Most fields are protected by a simgl¢hlt keeps
replicas consistent and readable by default, but allows an exclusiteelagk on the authority
for updates. File size anahtime on the other hand, are protected by a lock with states cor-
responding to modes of client file access: single client, shared read, od meiad/write or
shared write. A “scatter” lock regulates thgimefield for directory inodes when fragment(s)

are managed by different MDSs than the inode: concurrent upda&tedlaved unless the lock

47

is moved to a state that combines values and allmseto be read.

Ordinarily all update operations are forwarded to the metadata objectraytioo se-
rialization and journaling. A few operationknk, unlink, andrename affect multiple metadata
objects that may be managed by different MDS nodes thralmre updatesFor example, if
link is creating a hard link in a directory on the current MDS that refers to ateina a different
MDS, it will issue a slave request to increment the link count. Slaved updegespplied using
a two-phase commit protocol: once all slaves have journaled a “prepeeat, the coordinating
MDS journals the update (effectively committing the transaction), and slauesgbmatching

“committed” events to close the transaction state.

4.3.4 Load Balance

Each MDS monitors the popularity of cached metadata through counteisaisso
with each inode and directory fragment. Each inode popularity vector iesladread and a
write counter, while directory fragments additionally moniteaddir operations and the fre-
guency that metadata is fetched from or committed to the object store. In additisnown
popularity, each directory maintains three additional load vectors that $armmations over
metadata nested deeper within the hierarchy: one for all nested metadatr @il nested
metadata for which the current node is authoritative, and one for autih@itaetadata within
the current subtree only.

When an MDS services client requests, the appropriate counters sgengrded on
the affected metadata and its ancestors in order to provide a hierarcldeabf metadata

popularity, which is in turn used to inform replication and migration decisiomseXponential

48

decay factor is applied when counters are read, providing a smootpeokapation of recent
popularity.

Nodes in the MDS cluster periodically share their overall load level, as waha
cumulative popularity of locally managed metadata grouped by the authoritAb& of the
immediate ancestor for each subtree. This allows each overloaded nadertoite the fraction
of its overall workload to shed to underloaded nodes, while favoring indgrs that reunify
child subtrees with their parents. The hierarchical popularity accountithgeisused to select
appropriately sized subtrees to migrate.

While the popularity counters measure the frequency of metadata accéing] a
counter for each directory measures populasipyead Each directory has a short list of the
clients to last access its contents. The spread counter is incremented amyawilew client’s
request is processed. Spread helps inform metadata replication dedmicavailability, as

demonstrated in Section 4.5.7.

4.3.5 Subtree Migration

Each subtree migration is a transfer of all cached metadata for the subithée.
exchange includes non-dirty metadata (that, strictly speaking, is not chdedeorrectness)
because cache-worthiness is presumably unrelated to which MDS mahagelthe one-time
cost during migration is significantly less expensive than re-fetching @&enall subset of the
data from the metadata store.

Migration involves a few initial message exchanges to set up the traneféthan

a two-phase commit: the “importing” node journals a copy of all imported metatiata(t-

49

Start), the “exporting” node commits the migration by journaling an Export tevaard the
importer journals an ImportFinish to close the transaction in its journal. Anytéoger’ nodes
who also replicate the root of the subtree are notified before the migrationshegd after it
completes, so that any cache expiration messages can be directed a¢ lmbdetind new subtree
authorities. This is necessary to ensure expirations are reliably déivetiee face of importer
or exporter node failure, to preserve cache invariant (3). (A faitdireoth nodes is handled
during theresolvephase; see Section 4.4.3.4.)

The relative ease with which subtrees are migrated is made possible by exdbedd
inodes, which place all metadata within a single hierarchical namespace wigt-defined
partition. Similarly, the use of a shared object store for metadata storatigfas migration
for arbitrarily large subtrees of the file system, as each migration involMggtuam transfer of

cachedmetadata.

4.3.6 Directory Fragments

Metadata replication facilitates the distribution of read operations only, whilieeses
are normally partitioned at the granularity of the directory hierarchy. Neitlechanism ad-
dresses load imbalance associated with individual directories that aeeneXyrlarge or heavily
updated (as in many high performance computing applications [98]). Mereour basic ap-
proach to directory metadata storage (each directory’s dentries anesimgdten to a single
object) does not scale well to large directories, nor does prefetchirantire directory always
make sense in such a scenario.

In order to address both issues, Ceph extends the directory hierarcipw di-

50

| 1100/4 ‘ |
00/2 01/2 100/3 101/3 11014 11113

Figure 4.3: Directories are fragmented based on a tree in which each interior node Has
children, and leaves correspond to individual fragments. Fragmentseacribed by a bit pat-
tern and mask, like an IP subnet, partitioning an integer namespace. Dantri@ssigned to a
specific fragment using a hash functions.

rectory contents to be broken into multiple fragments. The one-to-many redaiphetween

directory inodes and directory fragments is specified lisag tree structure stored in the in-
ode. An integer namespace is partitioned into one or more fragments baaddeenn which

interior vertices split by powers of two, and the leaves are individughfients, as illustrated
in Figure 4.3. Each fragment is described by a bit mask (indicating which figitsignificant)

and a value for those bits, like an IP network and netmask. Directory eateanapped into a
particular directory fragment by hashing the file name and looking up thétiresvalue in the

frag tree.

Each directory fragment’s metadata are stored in a separate object, alextiegely
large directories to be stored efficientRReaddirproceeds in fragment order and returns meta-
data in fragment-sized chunks, preserving prefetching performan@pplications that touch
every file in the directory. Because our subtree-based metadata partidefined in terms
of directory fragments, load can be finely delegated by migrating fragmetegebn MDS
nodes. Any fragment can be split intd ub-fragments if it becomes large or busy. Conversely,
fragments can be rejoined if load decreases or a directory shrinksie T$han 1/0O cost as-

51

sociated with fragment splits and merges, as both operations involve writtntgeuvesulting

per-directory fragment metadata objects.

4.3.7 Traffic Control

To effectively adapt to a changing workload, the MDS cluster must alpe @ath
situations where a large number of clients access the same file or directogyhiethrchy at
the same time, even suddenly and without warning. Extremely popular filedigetdories
and sudden “flash crowds” are common in scientific computing workloa®ls({¢here large
numbers of nodes may be acting in unison) and general purpose waskiteere large numbers
of users access similar files due to external events. If tens of thoushd@mts access a single
MDS simultaneously, that node will not be able to handle the request warkifiaiently.

The fundamental problem is client knowledge of the metadata partition: if atitslie
know where to access any given piece of metadata at any time (basedatirdefined hashing
strategy, for instance) then there is nothing to prevent them from simuitalyeaccessing the
same item. Similarly, if clients are ignorant of the metadata distribution, then theieses)
must be directed randomly and forwarded within the MDS cluster, or passghrsome sort of
proxy, in either case requiring an extra network hop for all requedtslly, one would like a
combination of the two situations: access to unpopular items to be directed atthiogitative
MDS nodes, and access to popular items to be directed at many or all ma@adbsréplicating
the popular metadata) to distribute traffic.

Ceph controls how client requests are directed by using clients’ initial &groerof the

metadata distribution to achieve near-ideal traffic flow for both populavapdpular metadata.

52

All MDS responses sent to clients include current replication informatiomtshwhich MDS
nodes the client should contact in the future—for the metadata requestédeanancestors,
which are then cached on the client. For unpopular items, the MDS cluster lieli$scto
direct future requests only at the authoritative node, while for popularsitéae client is told
the item is replicated on many or all nodes. Because the popularity metricxapptes the
prevalence of an item in all client caches, the MDS cluster can effectaeeind the number of
nodes believing any particular file or subtree of the file hierarchy is logatady one place at
all times, thus avoiding potential flash crowds before they can occur wililallwing most
requests for unpopular data to be directed efficiently.

This strategy works for both explored and unexplored portions of thaiaiey. Be-
cause client requests are directed based on the deepest known angfigotential flood of
requests will initiate from a set of mutually known (and thus popular) direxterin extreme

cases, the root directory, which is known to all clients and consequegtilyhreplicated.

4.4 Failure Recovery

Robust failure recovery is critical in distributed systems, where a larggbau of
distinct pieces of hardware increases the likelihood of failure. Althoughvetadata architec-
ture is based on journaling, a relatively standard mechanism for facilitaihgd recovery, a
number of factors complicate recovery. First, journals are large: emteasthe tail may be
significantly out of date. Second, the migration of metadata between sentrexduces inter-

vals of ambiguous authority that must be resolved during recovery. ,Jdurddistributed cache

53

relies on a large amount of “soft” (non-journaled) state in order to fungii@perly, including
the identity of replicas and lock states. Because journaling such metaddthlveaxorbitantly
expensive, it must be reliably reconstructed during failure recovenally, open file state is
associated with inodes—independent of the namespace—and sharedtbrdlifents, who are
not always aware of metadata updates that may have relocated an ojgepoSigion in the

hierarchy.

4.4.1 Journal Structure

Each MDS maintains an independent journal containing a chronologigaésee of
atomicevents each of which typically includes some modified or contextual metadata. Ceph
logically divides the event sequence irdegmentsand begins each segment with a special
subtree magvent that describes which subtrees of the hierarchy the MDS wagitatilie for
at that point in time.

Because inodes are embedded within the hierarchy, each journaled opgs be ac-
companied by the modified metadata’s ancestors in order to locate the item withierduehy.

To avoid duplication of contextual metadata in the journal, ancestors amajedronly up to
the root of the containing subtree, and each ancestor is journaled adypensegment (unless
it is subsequently modified). Between the subtree map and events that fedlotv,segment
provides the necessary context to correctly interpret all metadata sptiedatains.

Each piece of dirty metadata in the MDS cache is placed on a linked list for the
segment it was most recently journaled in. Before old segments are trimnmadHeotail of

the journal, any directory fragments still referenced by the segment dittgriscommitted.

54

New segments are created shortly after the journal extends onto a negestsject, such
that as segments are trimmed the entire backing objects can be deleted to reskaspade.
This allows each MDS to trim its own journal with minimal overhead by simply trangrthe

appropriate dirty list, in contrast to the cleaner in log-based file systems.

4.4.2 Failure Detection

Each active MDS sends regular beacon messages to a central morgtorsiese for
coordinating cluster membership. If an MDS does not check in for a mrftlg long interval, it
is declared down and the status change is broadcast to surviving mMd&sprocesses who do

not receive timely positive acknowledgement in response to their owrohs@ommit suicide.

4.4.3 Recovery

Each MDS consists entirely of a running process with a large in-memonrecath
lizing a distributed, shared object storage substrate. MDS failure ddegswdt in data un-
availability in the way that hardware failure in systems utilizing a local hard disk\(RAM
might. Once an MDS is declared down, a process running on any harehwde can be chosen
to recover in its place.

Recovery is broken into four stages. The contents of the journal atedad into
memory, ambiguous subtree authority and the fate of distributed transacgaesalved, client
sessions are reestablished to restore open file state, and finally theejmide the cluster’'s

distributed cache.

55

4.4.3.1 Replay

Journakeplaybegins with the first complete segment in the journal. The MDS simply
reads all journal events in chronological order and adds any modifiedrdextual metadata
to its in-memory cache. This serves to recover any dirty metadata that mayavetoeen
committed before the failure, as well as to prime the new MDS'’s cache.

Special note is made of events that indicate distributed transactions. Foplexéhe
MDS maintains a list of ImportStart events that are not followed by a matchingriipish,
as indicates an ambiguous subtree import that may or may not have been confuyitted
exporting MDS. Similar message pairs reflect anchor table updates omugldate transactions

made on behalf dink, unlink, or renameoperations coordinated by other nodes.

4.4.3.2 Resolve

During theresolvephase, the fate of ambiguous transactions in the journal is deter-
mined. Each recovering node broadcastesolvemessage to all MDSs that includes a list
of locally managed subtrees (described by the root and bound dirdcagrypent identifiers),
ambiguous subtrees that were mid-import at the time of failure, and any stalseas (see
Section 4.3.3) initiated by the target MDS whose fate is unknown. Any sagy/fnon-failed)
nodes in the cluster send similar resolve messages to each recovering MDS.

As each resolve is processed, the recovering MDS updates its owe tackflect
the authority of subtrees explicitly claimed by other nodes. Ambiguous slaletegpare cross-
checked against the local list of recently committed transactions, and aiseginerated to
inform the recovering node. Once all resolve messages have bedrets@ambiguous imports

56

are resolved by simply checking if the subtree was unambiguously claimatbtiyet node. (In
the case of failure during subtree migration, only the importer will be undutteeaesult; the
exporter either did or did not write a commit to its journal.) Surviving bystasidezo examine
resolve messages to learn interrupted migration outcomes.

Finally, each recovering node trims all non-authoritative metadata fromdtsegaat
is not an ancestor of authoritative metadata (and thus required) oretowad. This is nec-
essary because it is impossible to know whether any non-authoritative ateetads updated,
moved, or even deleted at some point after it was mentioned in the local joionensure the
remaining replicated ancestor replicas are correct, all nodes replicatimgaed file or direc-
tory mention the event in their journal. This restores all distributed cachstreams except

(4)—replica identity (see Section 4.3.2).

4.4.3.3 Reconnect and Open File State

Open file state, unlike other soft state, is shared not with other MDSs butltits
mounting the file system. Each recovering MDS reestablishes prior cliesibeesand queries
clients for previously issued open file handles, which are necessagraate the corresponding
capability and lock state in the MDS cache.

However, file opens are not synchronously journaled by the MDS, toodivoid the
additional latency, and because most files are opened read-only lggiabe updates are not
deemed a priority). Instead, the MDS periodically writes recently openetegitm the journal,
and clients describe their capabilities by both inode number and last knonarfike If an open

file's inode was not recovered from the cache, the filename will allow it totsed within the

57

hierarchy. (Again, mentioning renamed replicas provides key informageaed to reliably

interpret paths for non-authoritative inodes.)

4.4.3.4 Rejoin

The final stage of recovery restores distributed cache and lock setev&ing nodes
send awveak rejoinmessage to each MDS, declaring any metadata replicas that the recipient is
authoritative for, and any recovered file capabilities the sender is tiwb@tative for.

Surviving nodes (who have lost no state) setrdng rejoinmessages to recovering
nodes, declaring any replicas that they hold, as well as asserting loek Atey declared repli-
cas that the recovering node does not already hold in its cache aressbtsom the survivor:
an item’s absence in the journal implies it has not been modified and the reghexesore up
to date.

Recovering nodes use rejoin messages to initialize the lists of known reprad-a
ated with each piece of metadata, and to choose initial lock states that aretitdenpeh any
surviving nodes. Recovered capabilities listed in weak rejoins that fallmlidically managed
subtrees are claimed and managed locally, with new client sessions esthblsshecessary.
Although migrating capability management is not strictly necessary (the othe3 b&arly
managed the capability just before the failure), reusing the capability mignagmhanism in
place for subtree migration simplified our implementation. Finallgjain ackmessage is sent

to initialize replica locks, and the recovered node becomes active.

58

4.4.4 Discussion

Any “dirty” metadata recovered from the journal will be restored to the imaowy
cache. However, at least some of that metadata will likely have been commjttibe prior
MDS instance before it failed. Although version numbers are attached noesdidata objects
to ensure correctness, some unnecessary I/O may result aftermecove

On the other hand, the use of a large journal provides a recovereas witid the
warmest subset of the node’s in-memaory cache prior to failure. Coastlgusimply killing an
MDS process and restarting it is actually faster than if it were cleanly sivat dThis durability
resembles that in the Google File System’s MDS [30].

A limitation of this design (and, partly, my implementation) is that the resolve and
rejoin recovery phases require the participation of all failed nodes. édhan certain cases

this requirement can be relaxed, in general a multi-node failure requiraied recovery.

4.5 Evaluation

The design of Ceph’s MDS architecture is evaluated in three stages.|Evalpate
the relatively efficiency of static subtree, dynamic subtree, and hasdbapproaches in a
simulation environment to demonstrate the advantages of an dynamic, adsginaach. |
next evaluate the performance of Ceph’s MDS, by analyzing static fitersysnapshots and
captured file system traces in order to better understand metadata warkiwédheir impact
on performance. Finally, | measure the performance of the implementation wéthga of

micro-benchmarks and capture workloads under normal-use and fedlemarios.

59

4.5.1 Metadata Partitioning

| evaluate the relative performance and scalability of a dynamic subtisses fperti-
tion compared to alternative approaches: namely, a static subtree pasitgpm (Collection of
NFS servers), directory-based hashiagd. Lustre), file-based hashing, and Lazy Hybrid [15],
a hybrid hash-based approach proposed by BrandL . This comparative evaluation is per-
formed in an event-driven simulation environment.

Initially, 1 fix the amount of MDS memory per node and scale the entire system:
file system size, number of MDS servers, and client base. Figure dwksghe performance
degradation of individual MDS nodes for different system sizes uadearedominately static
(file system and client) workload. Dynamic and static subtree partitioning shewest per-
formance, the only difference between the two being that the static strabegynbt employ
load balancing to adjust the initial partition. In a real workload environmestitic partition is
unlikely to be practical as file systems and workloads evolve over time arafthézs are not
typically as easily partitioned as our workload (a large collection of hometdities). The ap-
parent performance penalty for load balancing is due to an unfair distribof metadata: some
MDS nodes manage a small amount of metadata with extremely high efficiency otihdes
have poor cache performance, resulting in a higher (though unfaralbeluster throughput.
More significantly, the performance of file and directory hashed distribstdegrades more
quickly than subtree based partitions due to inefficiencies analyzed in 54chid.1.

File hashing and lazy hybrid distributions show significantly lower perfoceatue

to inefficient metadata I/O operations, which involve disk requests to loadidudil inodes

60

3500 T T T T T T T T T
3000 p°

2500

o
(9]
"
]
Q
e
H

T
S 20004 o go-m = - Bevraomnns B
g StaticSubtree —+—
= 1500 & DynamicSubtree ---x--~
8 T DirHash ------
= Tem LazyHybrid &
o 1000 | Rl B FileHash ——=--
2 s00f Sooem

0 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
MDS cluster size

Figure 4.4: MDS performance as file system, cluster size, and client base are scaled.

into cache. In contrast, the subtree and directory hashing partitioninggstsatexploit the
presence of locality in the workload by embedding inodes and storing eiriiaties together
on disk to allow efficient lookups and prefetching. The benefits of thisaguh are best seen
by contrasting the performance of the directory and file hashing stratedies are otherwise
identical.
Lazy Hybrid performance is interesting because it scales almost lineaglyadits

ability to avoid performing most path traversals under the evaluated workldadever, this
ability is predicated on the rarity of modifications to the directory permissionshadrchy

which must be (lazily, but eventually) propagated to potentially large quantitieetadata.

45.1.1 Prefix Caching

The performance of metadata partitioning strategies is tightly linked to metadata
cache efficiency. One of the primary factors affecting cache utilizationeisded to cache

prefix inodes of ancestor directories for the purposes of path tievditse overhead associated

61

80 T T T T T T

60 | .

sofF I
w0 DynamicSubtree —+—
4 X StaticSubtree ---x--{
Sk DirHash -----
30 -7 FileHash &

20 [— ¢ — K== e > ONMRRRRRREEEEEE 3

Fraction of cache consumed by prefixes (%)
B
*

10 1 1 1 1 1 1
5 10 15 20 25 30

MDS servers

Figure 4.5: Percentage of cache devoted to ancestor inodes as the file system, aierstril
MDS cluster size scales. Hashed distributions devote large portions ot#uties to ancestor
directories. The dynamic subtree partition has slightly more ancestors thatatteepartition
due to the re-delegation of subtrees nested within the hierarchy.

with caching ancestors for hashed partitions is particularly high becaresgtalies are scat-
tered throughout the hierarchy and the prefix directory inodes to locate ttust be replicated
widely throughout the cluster. Figure 4.5 shows the percentage of MBEI®@ssociated with
ancestors as file system, client base and cluster size scale (as in Figuiehé.4tilization for
the static subtree partitioning represents a baseline for the file system sinanatésirelated
to the ratio of directories to files, the average branching factor andge/éta depth. The dy-
namic subtree partition devotes slightly more cache to prefixes to anchoeesibisted within
the hierarchy that have been re-delegated to other MDS nodes to bidadce

The consumption of cache memory by ancestor metadata has the effectedsiag
the cache hit rate and thus overall MDS performance. The extent to whghffects perfor-
mance is related to the average depth of directories in the hierarchy; slyiaumostly flat
namespace is more easily distributed—Lazy Hybrid tries to artificially flatten threespace

to achieve this effect. Ancestor caching overhead is also greater fédlesitache sizes both

62

1 T T T T T
0.95
09 |
0.85
2 s’
© 08 o
= i
S 075
< i
5 07 u
0651 /A&7 _
[y . DynamicSubtree —+—
06 F ¥ ! 5 StaticSubtree —-x-— -
i] 4 DirHash ------
0.55 | FileHash & A
. = LazyHybrid --m-
05 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Cache size relative to total metadata size

Figure 4.6: Cache hit rate as a function of cache size (as a fraction of total file sysaemn
For smaller caches, inefficient cache utilization due to replicated ancessuiss in lower hit

rates.

because memory is more scarce and because the demand for prefpab fioaversal is related
to the distribution of requests throughout the file system, not just factopopional to the size
of the cache. Figure 4.6 shows how cache performance varies withthe s&ze, expressed
as a fraction of the total size of the file system’s metadata. Note that the geneerof the
hit rates as cache size increases is predicated on the degree of localéynorttioad; a more

random distribution of requests will result in a performance similar to smaltdrecsizes.

45.1.2 Traffic Control

One of the key advantages of a dynamic partitioning strategy is the ability to manag
client ignorance to prevent simultaneous access by tens of thousamskrsfrom overwhelm-
ing an individual metadata server. Figure 4.7 shows the number of tsquesessed over time
by individual nodes in the simulated MDS cluster when 10,000 clients simultahemgquest

the same file, a scenario typical of many scientific computing workloads.d3¢&xjare directed

63

300000 ; : . . . , — :
v
§ 250000 For\(/\?/grlgg x|
% 200000 i
@ 150000 f; i
2 100000 i
& 50000 |- \ i
ok I L 1 1 1 1 1 1 I
8 802 804 806 808 8.1 812 814 816 8.18 8.2
., 300000 . , : : :
@ 250000 Replies —+—
3 200000 Forwards - |
2 150000 i i
2 100000 | i
& 50000 f i
!) I I | I I I I I

0 !
8 8.02 804 806 808 81 812 814 816 8.18 8.2
Time

Figure 4.7: No traffic control (top): nodes forward all requests to the authoritdéizxs who
slowly responds to them in sequence. Traffic control (bottom): the atdtiee node quickly
replicates the popular item and all nodes respond to requests.

randomly because clients do not already know which MDS node is reigpetigr the file.
Without traffic control (top), MDS nodes simply forward requests to thba@mitative node who
is quickly saturated and slowly (and, in real situations, inefficiently) nedpo When traffic
control is enabled (bottom), the authority quickly recognizes the file’s emgebpularity and
replicates the metadata on other nodes.

The response time from when the flash crowd begins until it is effectivetyilolited
across the cluster is dependent on a number of factors, including tieatiem threshold, the
rate at which client requests can be received and then forwardedi$/mddes, and the latency
of 1/0 requests that may be required to load the requested metadata intoltee This response
time could be reduced if non-authoritative MDS nodes recognized theeafttsbd of requests
and preemptively cached the metadata being requested without waiting to bedolddpor if
the authoritative node noticed the flood of requests before waiting for thedata to be loaded

from disk.

64

45.2 Embedded Inodes

| next consider the performance implications of a metadata storage strategicim
inodes are embedded inside directories. | analyze a range of static fidensgsapshots, in-
cluding a shared university engineering department file sesa. ¥ [74], an aged (10 year)
web and email server file systemestrg, a software development serverakkd, and a col-
lection of file systems of varying vintages (0-8 year) for a commercial vael g€mail) host
(web.®. I measure the performance of a fully functional implementation with a rafhigeopo-
benchmarks and a 2.5 hour web and email workload tréest(Q.

This set of experiments primarily reflects general purpose—as opposaikntific
computing—file system workloads at scale, mainly because paired file sgsigpshot and
workload data from high performance computing systems was not readilgtzdieao me. MDS
performance under synthetic workloads based on common scientific cogppudikload pat-

terns (as described by Wamegjal. [98]) is considered in Sections 4.5.4 and 4.5.5.

4.5.2.1 Directory Sizes

| begin by looking at typical directory sizes, and show that the incresigedof di-
rectories due to embedded inodes has little impact on performance companedoterhead
of fetching inodes separately. Figure 4.8 shows the cumulative diredegistributions for
a range of file system snapshots and the Linux kernel source (whisé fou certain bench-
marks). More than 95% of directories contain less than 100 entries, aunldl wocupy less
than 20 KB with embedded inodes. This allows for files averaging 20 cteasagnd 160 byte
inodes in place of 64-bit inode numbers—a 6-fold increase in storageevés, for small 1/O0s,

65

o r—

destro

""" yakko

— — — kernel
web.janky
web.looney
web.randy
web.spacey

— — soe.csl|

— — soe.fac
soe.grads

""""" soe.etc

0 T T T T TTTT1T T T T 1111
1 10 100

Directory size (entries)

Cumulative Fraction

Figure 4.8: Cumulative directory size for a variety of static file system snapshots. Mdizeg-
tories are very small (or even empty), and less than 5% contain more tham.

positioning delays dominate. For example, a random seek followed by a dikdeaead takes
about 13 ms on a commodity 500 GB 7200rpm SATA disk. Reading 20 KB isigiifisantly

slower, and more than 512 KB (a 2500 file directory) can be read in twitaitha If the seek
is less than 1 MB past the previous read, 256 KB (1300 files) can bamaadte the time of

4 KB.2

4.5.2.2 Metadata Prefetching

The effectiveness of loading entire directories of metadata into cachengla §O
is evaluated by measuring the rate at which inodes are accessed fostlienkr €. g. due to
a stator oper) relative to the rate directories are loaded. For Linux kernel compilatidhe—

default and a random configuration—I found that 25-70% of loadedeésavere subsequently

2These measurements were made on a Western Digital WD5000YS-0dét Limux 2.6.21 with0_DIRECT.
The long seek test measures the time to mddB blocks of data at a random block-aligned disk offset, averaged
over 1000 iterations. The short seek test first reads a random 4 KR atal then measures the time to reddocks
of data located a short distance (between zero and 1 MB) past that.

66

File System Size (GB) Hard Links Link Locality

destro 162.5 0.047% NN [
yakko 41.7 0.022% [I |
web.janky 2314.2 0.013% [i
web.looney 1009.7 0.004% (I]
web.randy 1138.6 0.038% (NN |
web.spacey 37383 1.563% | 1
soe.csl 47.1 0.390% (I
soe.etc 0.0 16.473% | |
soe.fac 96.9 0.099% [I I
soe.grads 404 0.202% (I)
soe.others 8.3 0.057% NN
soe.staff 38.5 0.691% [|
soe.usr 11.6 1476% NN T
soe.var 12.6 0.000% |

B samedir [parallel E other (I)I I I(I)‘IZSH I .0!5. I I(I)‘I75” i 1'

Figure 4.9: Study of hard link prevalence in file system snapshots. For each stafightotal
file system size and the percentage of files with multiple links are shown. 8theke indicate
the fraction of multilink files with all links in the same directory, with parallel cohtirtked by

multiple directories, or with no obvious locality properties.

used (out of 500 directory loads). Replaying the destro file systemitndiated only a 1.3%
hit rate (out of 8000 directory loads), primarily due to large Maildir mailboxXdewever, for
44% of all directory loads, at least one inode was used, for 18% dttleaswere, and for
11% at least five were; as seen above, avoiding each additional I/@jsacable to loading an
additional 500-2000 embedded inodes. Most importantly, our strategy etesitiae risk of an
I/0 storm loading thousands of individual inodes if all files are acce@seaglas with an email

search ols -1).

67

4.5.2.3 Multilink File Prevalence and Locality

| analyze a range of file system snapshots to determine the prevalendisiaibdtion
of hard links. First, in Figure 4.9, we observe that multilinked files are rdoelpd in typical
file systems. When they do occur, all links often appear in the same direbtorgover, when
multilink files do span directories, they usually have cohorts linked in paralieltre same
pair(s) of directories (as fromp -1r, which creates a duplicate directory tree that links instead
of copies the original files). Anecdotally, | found that in each of the areyfile systems with

high rates of hard links, a handful of users were responsible.

45.2.4 Anchor Table Performance

When all links for a file occur in the same directory, there is no significarfope
mance impact on reads: the remote dentry and inode are loaded into thesitaahianeously,
avoiding any anchor table query. For link creation, an additional tréiesagccurs against the
anchor table and existing inode, increasing latency by 150% to 230%n(diegeon whether
the inode and anchor table are on the same MDS as the new link) in our githeritet-based
environment.

To measure the impact of the parallel link use-case, | consider the LiniB2kérnel
source and a duplicate tree with links (created with-1r). Starting from a cold cache, a
recursive walk (and stat) of the original tree took4:B 1.1 seconds, while the copy took B2
.9 seconds—only 34% longer. The limited impact is due to the fact that onlymoteoatable
qguery is needed for each directory: once its contents have been lodddtle cache for the
first hard link, any subsequent parallel links can also be resolvedis&Cpiently, as seen in

68

Figure 4.9, a relatively small fraction of all multilink files require significant iatdion with

the anchor table, limiting its impact on performance.

45.25 Hard Link Lifetime

Multilink files are rarely encountered in part because they are primaxy fasena-
nipulating temporary files. The average time interval during which an inodehimk count
greater than one in the destro trace is only a few milliseconds. Ceph’'situmglementation
navely keeps the entire anchor table in RAM on a designated MDS, such tHawdoGId store
roughly 20 million records, enough for 1-25 billion files (40 TB-1 PB of 4B fles), given
the rates in Figure 4.9. However, because measured workloads regelyertable queries, and
most updates are short-lived and never read, a more sophisticated taiaslgemeent approach

should scale well.

4.5.3 Journaling

| next consider the performance implications of large journals by analyamgffect

of journaling on metadata I/0O under a range of workloads.

4.5.3.1 Journal Interval

Large journals optimize metadata I/0O by masking multiple metadata updates to the
same objects and combining all dirty data for a directory into a single commit |/Gx@mnple,
for a Linux kernel untar, approximately 30% of journaled entries in eagment are obsolete

by the time they are trimmed (due to thrknod utime and sizehtimeflush sequence for each

69

file).

More importantly, each directory’s dirty metadata is committed in a single 1/O, re-
sulting in significantly fewer directory commits than metadata updates. The dateritich
we are able to group updates into a single commit is related to the time intervabdduethe
journal, and the type of directory locality in the workload. For a kernel dtatipn workload,
the commit rate (relative to the total number of metadata updates), drops ®8#tol3% as the
journal interval grows from 1 to 10 seconds, while for the destro waukid drops to 5% only
after 5 minutes, showing a surprisingly long locality interval. Journal enimiesir workloads
averaged 300-800 bytes edrla 200 MB journal would contain on the order of 250,000 to

600,000 entries, a two to five minute interval for an MDS doing 2,000 updatessgond.

4.5.3.2 Ancestor Metadata

| measure the overhead of journaling contextual ancestor metadata, avhinkeded
to place updates in the hierarchy during journal replay. Althougbhehaincluding contextual
metadata in each entry bloats the journal by 100-200% (for untar and caimpieorkloads),
including any given ancestor just once per 1 MB segment increaseduh®|size by only
.05%-.2%. That said, journal size is not terribly significant, as sequéf@ias easy to scale.
A typical MDS would only stream to the journal at a few megabytes per skcam order
of magnitude slower than a single disk, producing a significantly lighter I/Ckivad than

thousands of updates to hundreds of individual objects.

3Journal entries typically contain multiple inodes, dentries, and other matadaociated with the operation
(such as inode number allocation). For example, a file creation jowaat éncludes the inode and dentry for both
the new file and its parent directory (whasgimechanged). No particular attempt is made to efficiently represent
this data, as journal bandwidth—in terms of bytes per second—is relakbvely

70

20000 — B mdso O mds1 B mds2 B mds3

B mds4a [mdss

15000 —

10000

Throughput (ops/sec)

180 210 240 270 300 330 360 390 420
Time (seconds)

Figure 4.10: An MDS cluster adapts to a varying workload. At times 200 and 350 the wanklo
shifts, as 400 clients begin creating files in private directories and therhiaradsdirectory. In
both cases load is redistributed, in the latter case after the large (anddetpry is frag-
mented. At time 280 two additional MDSs join the cluster.

4.5.4 Adaptive Distribution

Figure 4.10 demonstrates the MDS cluster’s ability to adapt to varying file iaect d
tory creation workloads. At time 200, the cluster workload shifts as 400tsli@egin creating
files in private directories off of the root, all initially managed imglsO After a few seconds
the workload is redistributed, and at time 270 two additional servers join tlstecluAt time
350, the workload shifts again when all clients begin creating files irstimeedirectory. A
few seconds later the (now large) directory is fragmented and load is eeghigtributed. The
directory is fragmented a second time around time 380, resulting in a dip in tipatigs the
new resulting fragments are flushed to disk. Other cluster-wide dips akd pethroughput are

primarily due to contention in the shared storage pool, underscoring thetamperof efficient

71

——& makedirs

kN -®---® makefiles
4000 -+ "o —® — -® penshared
T - —&- — -® openssh+include

bl S openssh+lib

Per—-MDS Throughput (ops/sec)

0 16 32 48 64 80 96 112 128
MDS Cluster Size (nodes)

Figure 4.11: Per-MDS throughput under a variety of workloads and cluster sizeghécluster
grows to 128 nodes, efficiency drops no more than 50% below perfeerl{horizontal) scaling
for most workloads, allowing vastly improved performance over exististesys.

I/0.

4.5.5 Metadata Scaling

I measure the scalability of the MDS cluster use a 430 node partition odlhe
Linux cluster at Lawrence Livermore National Laboratory (LLNL). &g 4.11 shows per-
MDS throughputy) as a function of MDS cluster siz&)(such that a horizontal line represents
perfect linear scaling. In themakedirsworkload, each client creates a tree of nested directories
four levels deep, with ten files and subdirectories in each directory.afeeMDS throughput
drops from 2000 ops per MDS per second with a small cluster, to ab@@t 40s per MDS
per second (50% efficiency) with 128 MDSs (over 100,000 ops/sec .tolialjhe makefiles
workload, each client creates thousands of files in the same directorgn Wik high write

levels are detected, fragments the shared directory and relaxes thergisamtimecoherence

72

to distribute the workload across all MDS nodes. Dpensharedvorkload demonstrates read
sharing by having each client repeatedly open and close ten sharedrfitas opensstwork-
loads, each client replays a captured file system trace of a compilation imagéepdirectory.
One variant uses a sharétlib for moderate sharing, while the other shaf@sr/include,
which is very heavily read. Thepensharedaind openssh+includevorkloads have the heav-
iest read sharing and show the worst scaling behavior, | believe dusotor@plica selection
by clients? openssh+libscales better than the trivially separabiakedirsbecause it contains
relatively few metadata modifications and little sharing. Although | believe thateotion in
the network or threading in the messaging layer further lowered perfaeran larger MDS
clusters, my limited time with dedicated access to the large cluster prevented a oroggth
investigation.

Figure 4.12 plots latency) versus per-MDS throughput)(for a 4-, 16-, and 64-node
MDS cluster under thenakedirsworkload. Larger clusters have imperfect load distributions,
resulting in lower average per-MDS throughput (but, of course, migtheh total throughput)
and slightly higher latencies.

Despite imperfect linear scaling, a 128-node MDS cluster running the @ejib-
type can service more than a quarter million metadata operations per se@hdades at
2000 ops/sec). Because metadata transactions are independent lé©datd metadata size
is independent of file size, this corresponds to installations with potentially imamgreds of
petabytes of storage or more, depending on average file size. Forlexatipntific applica-

tions creating checkpoints on LLNL's BlueGene/L might involve 64 thousamiks with two

4Due to limited time with access to the large cluster, this hypothesis was not tested.

73

50 ~ I

~—= 4 MDSs 1

= 40 1 -e---s 16 MDSs / :
E g0 " 128MDSs J ‘;
>
2
o) 20 -
]
-

10

0 T T T 1
0 500 1000 1500 2000

Per—-MDS throughput (ops/sec)

Figure 4.12: Average latency versus per-MDS throughput for different clusaessmakedirs
workload).

processors each writing to separate files in the same directory (as inatkefilesvorkload).
While the current storage system peaks at 6,000 metadata ops/sec dddakeuninutes to
complete each checkpoint, a 128-node MDS cluster could finish in two decdheach file
were only 10 MB (quite small by HPC standards) and OSDs sustain 50 MBfsele a cluster
could write 1.25 TB/sec, saturating at least 25,000 OSDs (50,000 with reptiza 250 GB
OSDs would put such a system at more than six petabytes. More importamémd meta-
data distribution allows an MDS cluster (of any size) to reallocate resobasesl on the current
workload, even when all clients access metadata previously assignethtdeaMDS, making

it significantly more versatile and adaptable than any static partitioning strategy.

4.5.6 Failure Recovery

Recovery from multiple MDS failures is demonstrated in Figure 4.13 in a fode no

cluster under a file and directory creation workload. At time #@fs3fails (the process is

74

B mdso O mds1 B mds2 B mds3

mds3 fails mds1&2 fail mdsO fails

Throughput (ops

360 390 420 450 480 510 540 570
Time (seconds)

Figure 4.13: Throughput in a small cluster before, during, and after MDS failuréisnet 400,
500, and two at 450. Unresponsive nodes are declared dead &fiecdnds, and in each case
recovery for a 100 MB journal takes 4-6 seconds.

killed) and is soon replaced. Similarly, two nodes fail at time 450 and anotl&Ca In each
case, there is a 15 second delay before the non-responsive ncetdased dead, after which
point the total recovery time is 4 to 6 seconds, 3 to 4 seconds of which i$ sg@aying a
100 MB journal. Individual node failures do not disrupt throughputthe rest of the cluster
due to a hierarchical partition of localized client workloads.

In this experiment, each recovered MDS immediately functions at full effigibe-
cause there are no caching effects under the create-only workifogenéral, nodes will recover
warm metadata from the journal, including any recently modified metadataemtheopened
files. Under the kernel compilation workload, | measured metadata rgcaver rate of .45

inodes per journal entry (1200 inodes per megabyte).

75

4.5.6.1 Recovery Time

Recovery time is governed by a number of factors, although in most casefoini-
nated by failure detection and journal replay. | arbitrarily chose 15macfor the configurable
delay before non-responsive nodes are declared dead. Althoisgpetfiod dominates down
time in the experiment above, it should be sufficiently long to avoid failing dueatustent
network disruptions.

Replay is limited by the rate that the journal is sequentially read from the object
store—only a few seconds for the 100 MB journal above (partly becdds still cached by
the object storage layer), or 20 seconds for a 500 MB journal at 2&tBnd. Large journals
prolong downtime but prime the recovering node’s cache with warm metacsalting in
improved performance once they do become available.

The resolve phase involves exchanging small messages with every ofifer dnd
is thus dominated by cluster size. For example, a 10-node cluster with aedatepartition
of thousands of subtrees still resolves in less than 300 ms. In extremetydlusiers, such
an exchange may become significant, although such clusters are alsdiyygigapped with
high-performance networks.

The duration of the client reconnect phase is governed by the numbkemsf in the
system, but is bounded by a timeout to avoid waiting for unresponsive clidimis timeout
should balance timely recovery versus the risk of stale file handles on ¢diggys. | found that
a reconnect over 1.7 million open files among 1000 client processeadsaceoss 36 hosts)

took ten seconds.

76

gZOOOO
) 18000
~~
) 3
Q.16000
N
+ 14000
3
c 12000)
= 10000

8000 V‘fl
6000 —
| —@&—® mdso

4000 | -m---® dsl

2000 _- —v— ¥ mds2

1 = — -+ mds3
0 ——

60 75 90 105 120 135 150
Time (seconds)

Per-MDS Throug

Figure 4.14: Per-MDS throughput in a 4-node cluster under a compilation workload e#knh
read sharing of 1ib. Replication of popular metadata allows progress to continue even when
the MDS managing the heavily shared directory suffers a failure.

Finally, the rejoin phase is related to the number of MDS nodes and the amount o
metadata replicated by surviving nodes. As with resolve, the exchangmalf messages is
fast for all but the largest clusters: for highly separable workloagjsin consumes only a few
hundred milliseconds. In a 10-node metadata cluster with extensive metaghtation, a
recovering node spent 6 seconds rejoining: strong rejoin messagbs; 8B, were processed
from 9 surviving peers, each replicating 30,000 inodes. A final mesfsghed metadata for

inodes not present in the journal from a survivor.

4.5.7 Availability

Ancestor metadata replication allows nested subtrees to remain availablélitgtfac

ing path resolution, as demonstrated in Figure 4.13 by the failuradsO(who manages the

77

root directory) at time 500. Adaptive replication of popular directorigghir limits the im-
pact of a node failure: Figure 4.14 shows per-MDS throughput fouamode cluster under a
workload of 40 clients, each replaying an openssh compilation trace witly nead sharing of
/1ib.%> By replicating that directory’s contents across the cluster (in resporitegopularity
and read sharing), the failure of its authoritative MDS does not affiberanodes’ workloads.
Clients direct read-only metadata requestsy(statopenfor read) at replicas when a directory
is flagged for replication, improving availability (as in this experiment) and lgstgilution for

read/write workloads in which metadata updates must be handled by theitaii®node.

4.6 Future Work

Although the MDS implementation utilizes an object-based storage layer, the ap-
proach is enabled primarily by small inode structures. The extent to whictajigicable to
other storage architectures—including block-based storage—has@otbnsidered in detail.

A number of auxiliary metadata structures are managed irivee rfiashion. The an-
chor table, for instance, is kept entirely in RAM, as is a table of recently tatemuests (for
avoiding repetition when recovering from communication or node failure) amandful of
similar structures. | am investigating alternative data structures and updetges to serve
the same purpose.

| plan to apply simple heuristics to the management of multilink files such that inodes

are embedded in the directories through which they are most frequergignegd.

5MDS throughputs are higher here than in previous experiments due tokkoae consisting primarily of non-
update operations.

78

4.7 Experiences

The MDS design was vastly simplified by separating it from the object stdagge
avoiding concerns about low-level replication, consistency, and datament. Similarly, de-
spite my original expectation, the use of a large, lazily trimmed journal in combmatith
versioning had a simplifying effect on the implementation of the MDS. Althougity'dstate
has to be associated with the journal segment it was last written to, lazy joummaing elim-
inates most timing constraints on when in-memory state must be committed to the primary
metadata store.

In my initial design, individual directories could be flagged to distribute metada
using a hash function across all nodes in the cluster, much like some exptirfie sys-
tems [13, 20, 67, 76]. This led to a large number of corner cases, parljctelating to the
subtree partition, and did not mesh well with an architecture in which MDS shodeld be
dynamically added or removed from the cluster. By introducing directagnfrents and defin-
ing the subtree partition in terms of that abstraction, Ceph simultaneously estieth fine-
grained load balancing and addresses storage for very large diesctohile adding minimal
complexity to the subtree migration infrastructure.

As my distributed metadata cache design and implementation evolved to accom-
modate arbitrary failure, the importance of setting straightforward invarizatame clear—
particularly with respect to the subtree migration infrastructure. Simple rules'dikeplica
must know the identity of the authoritative copy” made it clear how to directlyestd—or

avoid—corner cases as they arose.

79

One of the largest lessons in Ceph was the importance of the MDS load &atanc
overall scalability, and the complexity of choosing what metadata to migratesvemer when.
Although in principle the design and goals seem quite simple, the reality of distigban
evolving workload over a hundred MDSs highlighted additional subtletiexstMotably, MDS
performance has a wide range of performance bounds, including @Btdpry (and cache ef-
ficiency), and network or I/O limitations, any of which may limit performancerst jpoint in
time. Although | experimented with a variety of MDS load functions (including cioiatiions
of metadata popularity, request rates, and queue lengths), in manysaapdsusing the CPU
load average works as well as anything else. Furthermore, it is difficaantitatively cap-
ture the balance between total throughput and fairness; under certaimstances unbalanced

metadata distributions can increase overall throughput.

4.8 Conclusions

| describe a clustered metadata server that optimizes 1/O to the underlyiagestor
system, adapts its metadata distribution to the current workload, and tolenbditegra node
failure. The MDS embeds inodes inside directories for efficient metadategstand prefetch-
ing, facilitating an efficient and adaptive hierarchical partition of worillometadata updates
are first written to large per-MDS journals, which aggregate many uptatee same directory
into a single commit to the primary metadata structures. This reduces the 1/O |tael omder-
lying storage system and improves MDS performance after recoverydrfailure by priming

its cache. We adaptively partition workload based a hierarchy definedrirs tef directory

80

fragmentsfacilitating fine-grained load balancing and simple, efficient storage fge ldirec-
tories. Finally, ancestor and popular metadata is replicated across multipke foodmproved
availability—both when the cluster is under load, and when a subset offiaitle

| consider the merits of a dynamic subtree-based partitioning strategy ectlatal-
ternative approaches in a simulation environment. The metadata storaggysisatgaluated
by analyzing a range of static file system snapshots and workloads. Indeate the vastly
reduced I/O workload resulting from large journals that exploit workltazlity, and con-
sider the prevalence of hard links and their impact on the performanag @habedded inode
strategy. Finally, | demonstrate the adaptive workload distribution and daikgovery in the

implementation in terms of performance and metadata availability.

81

Chapter 5

Data Distribution

Object-based storage is an emerging architecture that promises improvageahbit-
ity, scalability, and performance [7]. Unlike conventional block-basad klrives, object-based
storage devices (OSDs) manage disk block allocation internally, exposimgeaface that al-
lows others to read and write to variably-sized, named objects. In suchensyeach file’s data
is typically striped across a relatively small number of named objects distribtedghout
the storage cluster. Objects are replicated across multiple devices (or esopt@yother data
redundancy scheme) in order to protect against data loss in the peeskfailures. Object-
based storage systems simplify data layout by replacing large block lists withodnjeet lists
and distributing the low-level block allocation problem. Although this vastly impsoscala-
bility by reducing file allocation metadata and complexity, the fundamental tasktobdting
data among thousands of storage devices—typically with varying capagitiegsesformance
characteristics—remains.

Most systems simply write new data to underutilized devices. The fundameokal p

82

lem with this approach is that data is rarely, if ever, moved once it is writtelen Bvperfect
distribution will become imbalanced when the storage system is expandediseetew disks
either sit empty or contain only new data. Either old or new disks may be bapgnding
on the system workload, but only the rarest of conditions will utilize bothattguo take full
advantage of available resources.

A robust solution is to distribute all data in a system randomly among available stor
age devices. This leads to a probabilistically balanced distribution and oniyfamixes old and
new data together. When new storage is added, a random sample of edéting migrated
onto new storage devices to restore balance. This approach has tred adtiantage that, on
average, all devices will be similarly loaded, allowing the system to perfoeth wnder any
potential workload [84]. Furthermore, in a large storage system, a singkefitge will be ran-
domly distributed across a large set of available devices, providing a highdéparallelism
and aggregate bandwidth. However, simple hash-based distribution fadgéowith changes
in the number of devices, incurring a massive reshuffling of data. Fugkisting randomized
distribution schemes that decluster replication by spreading each digkisaseacross many
other devices suffer from a high probability of data loss from coincidenice failures.

| have developed CRUSH (Controlled Replication Under Scalable Haslipggudo-
random data distribution algorithm that efficiently and robustly distributesot®licas across
a heterogeneous, structured storage cluster. CRUSH is implementedtasmwimistic function
that maps an input value—typically an object or object group identifier—td aflidevices on
which to store object replicas. This differs from conventional apgreadn that data placement

does not rely on any sort of per-file or per-object directory—CRU®Eds only a compact, hi-

83

erarchical description of the devices comprising the storage clustenamdddge of the replica
placement policy. This approach has two key advantages: first, it is ctatypdiestributed such
that any party in a large system can independently calculate the locatiog obgatt; and sec-
ond, what little metadata is required is mostly static, changing only when devieeslided or
removed.

CRUSH is designed to optimally distribute data to utilize available resources, effi-
ciently reorganize data when storage devices are added or remodednfance flexible con-
straints on object replica placement that maximize data safety in the predeswradent or
correlated hardware failures. A wide variety of data safety mechanissrsugported, includ-
ing n-way replication (mirroring), RAID parity schemes or other forms of eraswding, and
hybrid approachese(g. RAID-10). These features make CRUSH ideally suited for manag-
ing object distribution in extremely large (multi-petabyte) storage systems vgligatability,

performance, and reliability are critically important.

5.1 Related Work

Object-based storage has recently garnered significant interest ashamsen for
improving the scalability of storage systems. A number of research andigirod file sys-
tems have adopted an object-based approach, including the seminal NAS{sfem [33], the
Panasas file system [68], Lustre [14], and others [76, 30]. Othekkdased distributed file
systems like GPFS [86] and Federated Array of Bricks (FAB) [82] fasémilar data distribu-

tion challenge. In these systems a semi-random or heuristic-based epEased to allocate

84

new data to storage devices with available capacity, but data is rarely terldcamaintain a
balanced distribution over time. More importantly, all of these systems locatgidatame sort
of metadata directory, while CRUSH relies instead on a compact clustermtestand deter-
ministic mapping function. This distinction is most significant when writing dataysgems
utilizing CRUSH can calculate any new data’s storage target without corgaltientral allo-
cator. The Sorrento [93] storage system’s use of consistent haghihgnpst closely resembles
CRUSH, but lacks support for controlled weighting of devices, a wdbl+ized distribution of
data, and failure domains for improving data safety.

Although the data migration problem has been studied extensively in the toiftex
systems with explicit allocation maps [5, 6], such approaches have heaagate require-
ments that functional approaches like CRUSH avoid. Chog]. [18] describe algorithms for
distributing data over disks which move an optimal number of objects as diskslded, but do
not support weighting, replication, or disk removal. Brinkmaaingal. [17] use hash functions
to distribute data to a heterogeneous but static cluster. Brinkmann lateibéssan improved
algorithm for placing replicas among a weighted set of disk3(im) time [16]. SCADDAR [34]
addresses the addition and removal of storage, but only supportstiaioed subset of repli-
cation strategies. None of these approaches include CRUSH's flexibiligfi@re domains for
improved reliability.

Brinkmannet al. also describe a problem with many placement algorithms—CRUSH
included—in which data is imperfectly distributed in small clusters with heteranendevice
weights [16]. In such small clusters, the key properties that CRUSHdw®sware neither signif-

icant nor required (namely, scalability and support for replica sepajatio

85

ANU (adaptive, nonuniform randomization) [108] maps data objects aness onto
a sparse subset of the unit interval, and dynamically adjusts servertaieca response to
observed load. This bears a strong resemblance to CRUSH’s overladganiem, although
CRUSH requires an initial weight estimate, and Ceph does not implement ANuigstics
for limiting load thrashing. However, like consistent hashing, ANU maps ¢tbjecndividual
servers with no support for replication, and further lacks CRUSHsslle placement rules,
support for failure domains, or a tunable balance between perfornaaacstability.

CRUSH most closely resembles the RUSH [41] family of algorithms upon which
it is based. RUSH remains the only existing set of algorithms in the literature tiliaési a
mapping function in place of explicit metadata and supports the efficient additibremoval of
weighted devices. Despite these basic properties, a number of issueRbiakiean insufficient
solution in practice. For example, like Brinkmann'’s algorithm [16], RgSblases placement
of certain replicas to certain devices, effectively providing a placesetinistead of an ordered
list, while RUSH> does not support the efficient removal of devices. CRUSH fully geizes
the useful elements of RUSHand RUSH while resolving previously unaddressed reliability

and replication issues, and offering improved performance and flexibility.

5.2 The CRUSH algorithm

The CRUSH algorithm distributes data objects among storage devices iagctod
a per-device weight value, approximating a uniform probability distributibime distribution

is controlled by a hierarchicalluster maprepresenting the available storage resources and

86

composed of the logical elements from which it is built. For example, one migurithe
a large installation in terms of rows of server cabinets, cabinets filled with diskes, and
shelves filled with storage devices. The data distribution policy is definednstefplacement
rules that specify how many replica targets are chosen from the cluster arndredtdctions
are imposed on replica placement. For example, one might specify that threeathireplicas
are to be placed on devices in different physical cabinets so that theptdshare the same
electrical circuit.

Given a single integer input value CRUSH will output an ordered ligt of n distinct
storage targets. CRUSH utilizes a strong multi-input integer hash functiosenhputs include
X, making the mapping completely deterministic and independently calculable udinthen
cluster map, placement rules, ard The distribution is pseudo-random in that there is no
apparent correlation between the resulting output from similar inputs or iettms stored on
any storage device. | say that CRUSH generatsciusteredlistribution of replicas in that the

set of devices sharing replicas for one item also appears to be indaperidll other items.

5.2.1 Hierarchical Cluster Map

The cluster map is composed @évicesandbuckets both of which have numerical
identifiers and weight values associated with them. Buckets can contaimuarien of devices
or other buckets, allowing them to form interior nodes in a storage higramolvhich devices
are always at the leaves. Storage devices are assigned weights loyrtimés&ator to control
the relative amount of data they are responsible for storing. Althouglyea $ystem will likely

contain devices with a variety of capacity and performance characteristitzdomized data

87

distributions statistically correlate device utilization with workload, such thaitddead is on

average proportional to the amount of data stored. This results in aimeasional placement
metric, weight, which should be derived from the device’s capabilities. kBuweights are
defined as the sum of the weights of the items they contain.

Buckets can be composed arbitrarily to construct a hierarchy repiegavailable
storage. For example, one might create a cluster map with “shelf” buckibis latvest level to
represent sets of identical devices as they are installed, and then cahbines into “cabinet”
buckets to group together shelves that are installed in the same rack. Sabigkt be further
grouped into “row” or “room” buckets for a large system. Data is placed énhilerarchy by
recursively selecting nested bucket items via a pseudo-random haditigtion. In contrast
to conventional hashing techniques, in which any change in the numbegef bans (devices)
results in a massive reshuffling of bin contents, CRUSH is based on iféenedt bucket types,
each with a different selection algorithm to address data movement resutimgtie addition

or removal of devices and overall computational complexity.

5.2.2 Replica Placement

CRUSH is designed to distribute data uniformly among weighted devices to maintain
a statistically balanced utilization of storage and device bandwidth resourbesplacement
of replicas on storage devices in the hierarchy can also have a critfeat eh data safety.
By reflecting the underlying physical organization of the installation, CRW&H model—
and thereby address—potential sources of correlated device failliypgcal sources include

physical proximity, a shared power source, and a shared networkn@&yding this information

88

into the cluster map, CRUSH placement policies can separate object remlioas different
failure domains while still maintaining the desired distribution. For example, toeaddhe
possibility of concurrent failures, it may be desirable to ensure that dplizas are on devices
in different shelves, racks, power supplies, controllers, and/asipaliocations.

In order to accommodate the wide variety of scenarios in which CRUSH might be
used, both in terms of data replication strategies and underlying hardardigurations, CRUSH
definesplacement ruleor each replication strategy or distribution policy employed that allow
the storage system or administrator to specify exactly how object repliegdared. For ex-
ample, one might have a rule selecting a pair of targets for 2-way mirroriteyfar selecting
three targets in two different data centers for 3-way mirroring, one ADR4 over six storage
devices, and so dn

Each rule consists of a sequence of operations applied to the hieramkiniple ex-
ecution environment, presented as pseudocode in Algorithm 1. The iimegéto the CRUSH
function, x, is typically an object name or other identifier, such as an identifier for apgod
objects whose replicas will be placed on the same devices.talde€a)operation selects an
item (typically a bucket) within the storage hierarchy and assigns it to theniewthich serves
as an input to subsequent operations. 3@lect(n,toperation iterates over each elemeati,
and choosen distinct items of type in the subtree rooted at that point. Storage devices have
a known, fixed type, and each bucket in the system has a type field tregdsta distinguish
between classes of buckets {J.those representing “rows” and those representing “cabinets”).

For eachi € i, theselect(n,t)call iterates over the € 1,...,n items requested and recursively

1Although a wide variety of data redundancy mechanisms are possiblsinfplicity | will refer to the data
objects being stored asplicas without any loss of generality.

89

Algorithm 1 CRUSH placement for objeat

1

2:

3

4
5
6
7.
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38

39

40:

41

: procedure TAKE(a) > Put itema in working vectori
i—|[a
: end procedure
: procedure SELECT(n,t) > Selectn items of typet
00 > Our output, initially empty
fori €ido > Loop over inpuf’
f—0 > No failures yet
forr— 1, ndo > Loop overn replicas
fr—0 > No failures on this replica
retry_descent— false
repeat
b «— buckefi) > Start descent at bucket
retry_bucket— false
repeat
if “first n” then > See Section 5.2.2.2
re—r+f
else
r'—r+fn
end if
0« b.c(r',x) > See Section 5.2.4
if type(o) #t then
b — bucketo) > Continue descent

retry_bucket— true
else ifo € or failed(o) or overloado,x) then

fr(— fr"—l,f(— f"—l
if oe 0andf, < 3then

retry_bucket— true > Retry collisions locally (see Section 5.2.2.1)
else

retry_descent— true > Otherwise retry descent from
end if

end if
until —retry_bucket

until —retry_descent
0« [0,0] > Add o to outputd
end for
end for
i—3 > Copy output back int®
: end procedure
: prociedurg % MIT > Append working vector to result
R—[Ri

: end procedure

90

choose(1,row)

Figure 5.1: A partial view of a four-level cluster map hierarchy consisting of rowdijeets, and
shelves of disks. Bold lines illustrate items selected by eabbctoperation in the placement
rule and fictitious mapping described by Table 5.1.

Action Resultingi
take(root) root

select(1,row) row2
select(3,cabinet) cab21 cab23 cab24
select(1,disk) disk2107 disk2313 disk243
emit

Table 5.1: A simple rule that distributes three replicas across three cabinets in the same ro

descends through any intermediate buckets, pseudo-randomly selecisted item in each
bucket using the functioq(r, x) (defined for each kind of bucket in Section 5.2.4), until it finds
an item of the requested typeThe resulting|i| distinct items are placed back into the input
and either form the input for a subsequselect(n,tpr are moved into the result vector with an
emitoperation.

As an example, the rule defined in Table 5.1 begins at the root of the Higrarc

Figure 5.1 and with the firstelect(1,rowhooses a single bucket of type “row” (it seleis2).

91

The subsequerstelect(3,cabinetghooses three distinct cabinets nested beneath the previously
selectedow? (cak21, cak23 cab24), while the finakelect(1,diskiterates over the three cabinet
buckets in the input vector and chooses a single disk nested beneatbféhem. The final
resultis three disks spread over three cabinets, but all in the samehi@approach thus allows
replicas to be simultaneously separated across and constrained within eotypes €. g.

rows, cabinets, shelves), a useful property for both reliability anfbpeance considerations.
Rules consisting of multipleake emitblocks allow storage targets to be explicitly drawn from
different pools of storage, as might be expected in remote replicatiomgasifin which one
replica is stored at a remote site) or tiered installatieng(fast, near-line storage and slower,

higher-capacity arrays).

5.2.2.1 Collisions, Failure, and Overload

The select(n,tloperation may traverse many levels of the storage hierarchy in order
to locaten distinct items of the specified typgenested beneath its starting point, a recursive
process partially parameterized by 1,...,n, the replica number being chosen. During this
process, CRUSH may reject and reselect items using a modified iihfat three different
reasons: if an item has already been selected in the current set (a nellisieselect(n,tyesult
must be distinct), if a device fgiled, or if a device isoverloaded Failed or overloaded devices
are marked as such in the cluster map, but left in the hierarchy to avoidess®y shifting of
data. CRUSH's selectively diverts a fraction of an overloaded des/itaa by pseudo-randomly
rejecting with the probability specified in the cluster map—typically related to itsregover-

utilization. For failed or overloaded devices, CRUSH uniformly redistribittaas across the

92

storage cluster by restarting the recursion at the beginning cfettez{n,t) (see Algorithm 1
line 11). In the case of collisions, an alternatés used first at inner levels of the recursion to
attempt a local search (see Algorithm 1 line 14) and avoid skewing thelbdata distribution

away from subtrees where collisions are more probahlg.(where buckets are smaller than

n).

5.2.2.2 Replica Ranks

Parity and erasure coding schemes have slightly different placemearita@ents
than replication. In primary copy replication schemes, it is often desirabde affailure for
a previous replica target (that already has a copy of the data) to becemewhprimary. In
such situations, CRUSH can use the “first n” suitable targets by reselesingr’ =r + f,
wheref is the number of failed placement attempts by the cursetgct(n,tsee Algorithm 1
line 16). With parity and erasure coding schemes, however, the rantisitiom of a storage
device in the CRUSH output is critical because each target stores diffete of the data object.
In particular, if a storage device fails, it should be replaced in CRUSHtpu listR in place
such that other devices in the list retain the same raekgosition inR, see Figure 5.2). In such
cases, CRUSH reselects usiig-=r + f,n, wheref; is the number of failed attempts onthus
defining a sequence of candidates for each replica rank that araiiistically independent of
others’ failures. In contrast, RUSH has no special handling of failettds; like other existing
hashing distribution functions, it implicitly assumes the use of a “first n” aggndo skip over

failed devices in the result, making it unwieldy for parity schemes.

93

r=r+f r=r+fn

N EEEEEL) S EEE
DOODE0

I EEEEs SLEEEE
MM CRETEL

Figure 5.2: Reselection behavior aelect(6,diskivhen device = 2 (b) is rejected, where the
boxes contain the CRUSH outpRtof n = 6 devices numbered by rank. The left shows the
“first n” approach in which device ranks of existing devicegl(e, f) may shift. On the right,
each rank has a probabilistically independent sequence of potentietstahgref, = 1, and

r' =r + f,n= 8 (deviceh).

5.2.2.3 Force-feeding

In a variety of environments it is desirable to specify the placement of thedpkca.
For example, in distributed computing environments in which each serverperboth com-
putation and storage tasks, network utilization can be significantly lowered firti replica is
stored locally. To enable such behavior, CRUSH allows you to “foreéfa specific first de-
vice to the placement algorithm, while still maintaining all other placement constiaiptsed
by the placement rule. (Note that although force feeding is relatively ktfaigvard, it is not
included in Algorithm 1.)

This is accomplished by consulting the device hierarchy that the placementsru
utilizing (i. e. that nested beneath the inittake), and inferring the choices that would be made
by eachselectto ultimately choose the force fed item. Each select initially chooses the inferred

or force fed item, and then proceeds pseudo-randomly for any additeswdts, producing a

94

distinct result list as before. This ensures that constraints imposed ipettement ruled. g.
separation of replicas within the hierarchy) are maintained, despite aniexplice of the
initial result.

Force feeding requires that each device only occurs once in the giN®ree of the
hierarchy in order to unambiguously determine the parent for each atileugh the rest of
the CRUSH algorithm has no such restriction. This would only be significantrfusual hier-

archies not considered here.

5.2.3 Map Changes and Data Movement

A critical element of data distribution in a large file system is the response to the
addition or removal of storage resources. CRUSH maintains a unifornibdistn of data
and workload at all times in order to avoid load asymmetries and the relatecltitizigtion of
available resources. When an individual device fails, CRUSH flagsavieelbut leaves it in the
hierarchy, where it will be rejected and its contents uniformly redistributethe placement
algorithm (see Section 5.2.2.1). Such cluster map changes result in an oftimahum)
fraction,wsajleq/W (WhereW is the total weight of all devices), of total data to be remapped to
new storage targets because only data on the failed device is moved.

The situation is more complex when the cluster hierarchy is modified, as with the
addition or removal of storage resources. The CRUSH mapping prackesh uses the cluster
map as a weighted hierarchical decision tree, can result in additional datnmant beyond
the theoretical optimum o‘{‘;\l,v . At each level of the hierarchy, when a shift in relative subtree

weights alters the distribution, some data objects must move from from subfitbetecreased

95

7s +——Affected weights
4 /%\‘

2 2 T

/Z N\ / \ Z N\ /7AN

1 1 1 1 1 1 1 1

Added item /

Figure 5.3: Data movement in a binary hierarchy due to a node addition and the subseque
weight changes.

weight to those with increased weight. Because the pseudo-randormglaicdecision at each
node in the hierarchy is statistically independent, data moving into a subtreiéosmly redis-
tributed beneath that point, and does not necessarily get remapped taftiterie ultimately
responsible for the weight change. Only at subsequent (deepeld Eithe placement process
does (often different) data get shifted to maintain the correct overaliveldistributions. This
general effect is illustrated in the case of a binary hierarchy in Figure 5.3

The amount of data movement in a hierarchy has a lower bou%,dﬁe fraction of
data that would reside on a newly added device with welghtData movement increases with
the heighth of the hierarchy, with a conservative asymptotic upper bour’m‘%f The amount
of movement approaches this upper bound whweris small relative t&V, because data objects
moving into a subtree at each step of the recursion have a very low fliitbafbeing mapped

to an item with a small relative weight.

5.2.4 Bucket Types

Generally speaking, CRUSH is designed to reconcile two competing gotadtseety
and scalability of the mapping algorithm, and minimal data migration to restore a bdldis:

96

Action Uniform List Tree Straw
Speed o(1) O(n) | O(logn)| O(n)
Additions | poor | optimal | good | optimal
Removals| poor poor good | optimal

Table 5.2: Summary of mapping speed and data reorganization efficiency of diffeueket
types when items are added to or removed from a bucket.

tribution when the cluster changes due to the addition or removal of devibeghis end,
CRUSH defines four different kinds of buckets to represent intgmath-leaf) nodes in the
cluster hierarchyuniform bucketslist buckets tree bucketsandstraw buckets Each bucket
type is based on a different internal data structure and utilizes a diffanection c(r,x) for
pseudo-randomly choosing nested items during the replica placemensgroepresenting a
different tradeoff between computation and reorganization efficiddnjform buckets are re-
stricted in that they must contain items that are all of the same weight (much likwarg®mnal
hash-based distribution function), while the other bucket types caninataix of items with

any combination of weights. These differences are summarized in Table 5.2.

5.2.4.1 Uniform Buckets

Devices are rarely added individually in a large system. Instead, neagstis typ-
ically deployed in blocks of identical devices, often as an additional shelfsarver rack or
perhaps an entire cabinet. Devices reaching their end of life are oftenrbjrdiggommissioned
as a set (individual failures aside), making it natural to treat them ag.aC@RUSH uniform
buckets are used to represent an identical set of devices in sucmstemces. The key ad-

vantage in doing so is performance related: CRUSH can map replicas intorarbifickets in

97

constant time. In cases where the uniformity restrictions are not appieptaer bucket types
can be used.

Given a CRUSH input value of and a replica numbaer, we choose an item from
a uniform bucket of sizen using the functiorc(r,x) = (hash{x) 4+ rp) modm, wherep is a
randomly (but deterministically) chosen prime number greater thaRor anyr < mwe can
show that we will always select a distinct item using a few simple number thewmpas? For
r > m this guarantee no longer holds, meaning two different replica&h the same inpux
may resolve to the same item. In practice, this means nothing more than a nqrateability
of collisions and subsequent backtracking by the placement algorittsesdion 5.2.2.1).

If the size of a uniform bucket changes, there is a complete reshuffloega between

devices, much like conventional hash-based distribution strategies.

5.2.4.2 List Buckets

List buckets structure their contents as a linked list, and can contain items With ar
trary weights. To place a replica, CRUSH begins at the head of the list witndisé recently
added item and compares its weight to the sum of all remaining items’ weightenDieg on
the value of hastx, r,item), either the current item is chosen with the appropriate probability, or
the process continues recursively down the list. This approach edefiom RUSH , recasts
the placement question into that of “most recently added item, or older itemg@isihnatural

and intuitive choice for an expanding cluster: either an object is relotatd newest device

2The Prime Number Theorem for Arithmetic Progressions [36] can ee tasfurther show that this function will
distribute replicas of objectin mg(m) different arrangements, and that each arrangement is equally ligglyis
the Euler Totient function.

98

with some appropriate probability, or it remains on the older devices asebefdre result is
optimal data migration when items are added to the bucket. Items removed from tie orid
tail of the list, however, can result in a significant amount of unnecgssavement, making
list buckets most suitable for circumstances in which they never (or veslyjahrink.

The RUSH algorithm is approximately equivalent to a two-level CRUSH hierarchy
consisting of a single list bucket containing many uniform buckets. Its fthester represen-
tation precludes the use for placement rules or CRUSH failure domainoifrotling data

placement for enhanced reliability.

5.2.4.3 Tree Buckets

Like any linked list data structure, list buckets are efficient for small datems but
may not be appropriate for large sets, where t¥im) running time may be excessive. Tree
buckets, derived from RUSH, address this problem by storing their items in a binary tree. This
reduces the placement time@jlogn), making them suitable for managing much larger sets of
devices or nested buckets. RU{SHE equivalent to a two-level CRUSH hierarchy consisting of
a single tree bucket containing many uniform buckets.

Tree buckets are structured as a weighted binary search tree with iterededvbs.
Each interior node knows the total weight of its left and right subtreessaiatbeled according
to a fixed strategy (described below). In order to select an item within lkehU€CRUSH starts
at the root of the tree and calculates the hash of the inpukkegplica number, the bucket
identifier, and the label at the current tree node (initially the root). Thatresscompared to

the weight ratio of the left and right subtrees to decide which child node tbnégt. This

99

1000

/

100 1100
10 110 1010
AR N N\ 7\
1 11 101|111 | [1001| (1011

Figure 5.4: Node labeling strategy used for the binary tree comprising each treetbucke

process is repeated until a leaf node is reached, at which point thaatesldtem in the bucket
is chosen. Only log hashes and node comparisons are needed to locate an item.

The bucket’s binary tree nodes are labeled with binary values using a sifixple
strategy designed to avoid label changes when the tree grows or shfinédeftmost leaf in
the tree is always labeled “1.” Each time the tree is expanded, the old rocomies the new
root’s left child, and the new root node is labeled with the old root’s labiteshone bit to
the left (1, 10, 100, etc.). The labels for the right side of the tree mirrasettum the left side
except with a “1” prepended to each value. A labeled binary tree with siesem shown in
Figure 5.4. This strategy ensures that as new items are added to (or cefrmwé the bucket
and the tree grows (or shrinks), the path taken through the binary tresnyoexisting leaf
item only changes by adding (or removing) additional nodes at the raibie dieginning of the
placement decision tree. Once an object is placed in a particular subtifagliteapping will
depend only on the weights and node labels within that subtree and will aogehas long
as that subtree’s items remain fixed. Although the hierarchical decisiointreduces some
additional data migration between nested items, this strategy keeps movemeattmaable

level, while offering efficient mapping even for very large buckets.

100

5.2.4.4 Straw Buckets

List and tree buckets are structured such that a limited number of hash uales$o
be calculated and compared to weights in order to select a bucket item. thsinithey divide
and conquer in a way that either gives certain items precedence {(hose at the beginning
of a list) or obviates the need to consider entire subtrees of items at all. Thaiviespthe
performance of the replica placement process, but can also introdioeptanal reorganization
behavior when the contents of a bucket change due an addition, rerokalweighting of an
item.

The straw bucket type allows all items to fairly “compete” against each otirer f
replica placement through a process analogous to a draw of straw$acBgreplica, a straw
of random length is drawn for each item in the bucket. The item with the lorsgest wins.
The length of each straw is initially a value in a fixed range, based on a ht&h@RUSH input
X, replica number, and bucket item. Each straw length is scaled by a facfgw;) based on
the item’s weight so that heavily weighted items are more likely to win the draw,dr,x) =
max (f (wj)hashx,r,i)). Although this process is almost twice as slow (on average) than a list
bucket and even slower than a tree bucket (which scales logarithmicsitigyy buckets result
in optimal data movement between nested items when modified.

The scaling factof (w;) for each bucket item is precalculated when the bucket is first
created or modified, using the iterative procedure in AlgoritfmA2though the pseudocode is

included here for completeness, its derivation was based on a combingeoroetric analysis

SNote that the first portion of the pseudocode is simply creating a sortedingaverseby weight using an
insertion sort.

101

and trial and error, and is neither concise nor elegant (I would naitpgised to learn that there

is an equivalent and trivial closed form). The basic intuition is that items withticiel weights

will have the same straw scaling value. We sort by weight, and start byggivanleast-weighted
items a straw multiplief (w;) of one. As each successively larger item weight group is “added,”
its straw multiplerf (w;) is chosen based on the desired probabpjyow Of choosing a shorter
straw versus the next longer straw, where we consider that items withr Etrgev multipliers
may still result in shorter straw lengths. Thatwgeow andwpex are a product item weight and

the number of items with equal or larger weights, a@ggow= #%

5.2.45 Bucket Discussion

The choice of bucket type can be guided based on expected clustehgratterns
to trade mapping function computation for data movement efficiency wheregpi®priate to
do so. When buckets are expected to be fixedy(a shelf of identical disks), uniform buckets
are fastest. If a bucket is only expected to expand, list buckets propiiteal data movement
when new items are added at the head of the list. This allows CRUSH to draettyeas much
data to the new device as is appropriate, without any shuffle betweenboitieet items. The
downside isO(n) mapping speed and extra data movement when older items are removed or
reweighted. In circumstances where removal is expected and reatanigfficiency is critical
(e. g.near the root of the storage hierarchy), straw buckets provide optimahtioigy behavior
between subtrees. Tree buckets are an all around compromise, pgosxdiellent performance

and decent reorganization efficiency.

102

Algorithm 2 Function to calculate straw scaling factiqw;) from the bucket item weightsy.

procedure CALC_STRAW_WEIGHTS(W, f) > Calclatef from w
size— length(w)
reversg0] =0 > Determine sort order o with an insertion sort.

for i =1tosize-1do
for j=0toi—1do
if wli] < wireversgj]] then

for k=1idowntoj+1do > Inserti here
reversgk] = reversék — 1]
end for
revers¢j| =i
break
end if
end for
if j =ithen
reverséi] =i >Addi at end
end if
end for
straw«— 1 > Initial straw length is 1
numle ft— size
wbelow«— 0
lastw— 0
i—0
while i < sizedo
freverséi]] < straw > Set this item’s straw multiplier
i—i+1
if i = sizethen
break
end if
if wlreverséi]] # wreversé — 1]] then > Different weight than previous item?
wbelow«— (wbelow+ wlreverséi — 1]] — lastw) x numle ft
for j =itosize- do > Adjust count of items with greater weight
if wlreverséj]] == wlreverséi]] then
numleft— numleft—1
else
break
end if
end for

wnext— numle ftx (w[reverséi]] —w(reverséi — 1)

wbelow
pbel OW«— wbelowtwnext

straw« Strawx —.— namreft

pbelow

lastw= wreverséi — 1]
end if
end while

end procedure

103

5.3 Evaluation

CRUSH is based on a wide variety of design goals including a balanced, tegigh
distribution among heterogeneous storage devices, minimal data movemeatide@ddition
or removal of storage (including individual disk failures), improvedeysreliability through
the separation of replicas across failure domains, and a flexible clustaifteon and rule sys-
tem for describing available storage and distributing data. | evaluate édbbse behaviors
under expected CRUSH configurations relative to RgSHnd RUSH -style clusters by sim-
ulating the allocation of objects to devices and examining the resulting distribuRoi&H»
and RUSH are generalized by a two-level CRUSH hierarchy with a single list or trekeiu
(respectively) containing many uniform buckets. Although RUSH'’s fidledter representation
precludes the use of placement rules or the separation of replicas &ihagsdomains (which

CRUSH uses to improve data safety), | consider its performance and datiorigoehavior.

5.3.1 Data Distribution

CRUSH’'s data distribution should appear random—uncorrelated to obgtifidrs
X or storage targets—and result in a balanced distribution across devibesqual weight. |
empirically measured the distribution of objects across devices containeaiiety\of bucket
types and compared the variance in device utilization to the binomial probabilitibditon,
the theoretical behavior | would expect from a perfectly uniform ramgwocess. When dis-
tributing n objects with probabilityp; = % of placing each object on a given devigethe

expected device utilization predicted by the corresponding bindn(ralp) is u = np with a

104

standard deviation af = y/np(1— p). In a large system with many devices, we can approxi-
mate 1- p ~ 1 such that the standard deviatiorois~ ,/(i—that is, utilizations are most even
when the number of data objects is lafgés expected, | found that the CRUSH distribution
consistently matched the mean and variance of a binomial for both homogeciesters and

clusters with mixed device weights.

5.3.1.1 Overload Protection

Although CRUSH achieves good balancing (a low variance in device utilidton
large numbers of objects, as in any stochastic process this translates amezaro probability
that the allocation on any particular device will be significantly larger than trenmenlike
existing probabilistic mapping algorithms (including RUSH), CRUSH includesraipgce
overload correction mechanism that can redistribute any fraction ofieafedata. This can be
used to scale back a device’s allocation proportional to its over-utilizati@nwttis in danger
of overfilling, selectively “leveling off” overfilled devices. When distriing data over a 1000-
device cluster at 99% capacity, | found that CRUSH mapping execution tiroesase by less
than 20% despite overload adjustments on 47% of the devices, and thatidregalecreased

by a factor of four (as expected).

5.3.1.2 Variance and Partial Failure

Prior research [84] has shown that randomized data distribution offeFsvorld sys-

tem performance comparable to (but slightly slower than) that of carefal striping. In my

4The binomial distribution is approximately Gaussian when there are maegtslj. e. whenn is large).

105

Devices|| Devices
Usage| Overfilled || Adjusted | Time | o

50% 0 0| 1.000| .100
70% 1% 1.9% | 1.003| .098
75% 1.6% 3.8% | 1.016| .095
80% 2.9% 6.4% | 1.022| .093
85% 7.7% 12.9% | 1.035| .081

90% 15.2% 22.1% | 1.040| .066
95% 28.6% 35.4% | 1.092| .041
97% 38.3% 41.4%| 1.161| .029
99% 44.5% 46.3% | 1.163| .025

Table 5.3: As the total utilization of available storage approaches capacity, the nurhter o
vices that would otherwise overfill and that require adjustment incre@dSH computation
increases slightly while decreasing variance.

own performance tests of CRUSH in the context of Ceph [100], | fouatirdndomizing ob-
ject placement resulted in an approximately 5% penalty in write performaregodtariance
in the OSD workloads, related in turn to the level of variation in OSD utilizationgractice,
however, such variance is primarily only relevant for homogeneoukleants (usually writes)
where a careful striping strategy is effective. More often, worklaadsmixed and already ap-
pear random when they reach the disk (or at least uncorrelated tislofagout), resulting in
a similar variance in device workloads and performance (despite cémgtult), and similarly
reduced aggregate throughput. | find that CRUSH’s lack of metadateoandt distribution in
the face of any potential workload far outweigh the small performanceltyamader a small
set of workloads.
This analysis assumes that device capabilities are more or less static over xime. E

perience with real systems suggests, however, that performance ibudetdrstorage systems

is often dragged down by a small number of slow, overloaded, fragmemtetherwise poorly

106

performing devices. Traditional, explicit allocation schemes can manualig auzh prob-
lem devices, while hash-like distribution functions typically cannot. CRUSHwalldegenerate
devices to be treated as a “partial failure” using the existing overloadaayn mechanism, di-
verting an appropriate amount of data and workload to avoiding sucbrpehce bottlenecks
and correct workload imbalance over time.

Fine-grained load balancing by the storage system can further mitigates devik-
load variance by distributing the read workload over data replicas, asrégrated by the D-
SPTF algorithm [62]; such approaches, although complementary, tsidewthe scope of the

CRUSH mapping function and this paper.

5.3.2 Reorganization and Data Movement

| evaluate the data movement caused by the addition or removal of storagessing
both CRUSH and RUSH on a cluster of 7290 devices. The CRUSH clusésisua levels deep:

nine rows of nine cabinets of nine shelves of ten storage devices, foalapfd’290 devices.

RUSHr and RUSH are equivalent to a two-level CRUSH map consisting of a single tree

or list bucket (respectively) containing 729 uniform buckets with 10as/each. The results
are compared to the theoretically optimal amount of movem@ptima = AWW , whereAw is
the combined weight of the storage devices added or removeWadadhe total weight of the
system. Doubling system capacity, for instance, would require exactlphtlé existing data
to move to new devices under an optimal reorganization.

Figure 5.5 shows the relative reorganization efficiency in terms ofithvement factor

Mactual/ Moptimal, Where 1 represents an optimal number of objects moved and larger nataes

107

CRUSH, tree bucket
CRUSH, list bucket addition
CRUSH, list bucket removal

RUSH_T
RUSH_P addition
RUSH_P removal

Movement Factor

0 T T T T T 1
10 30 90 270 810 2430 7290

OSDs added or removed

Figure 5.5: Efficiency of reorganization after adding or removing storage deviceddwvels
deep into a four level, 7290 device CRUSH cluster hierarchy, versi8HrUand RUSH . 1
is optimal.

additional movement. Th¥ axis is the number of OSDs added or removed andrtlagis is
the movement factor plotted on a log scale. In all cases, larger weighgetdrelative to
the total system) result in a more efficient reorganization. RJSaisingle, large list bucket)
dominated the extremes, with the least movement (optimal) for additions and mositneaty
for removals (at a heavy performance penalty, see Section 5.3.3 b&ld@BRUSH multi-level
hierarchy of list (for additions only) or straw buckets had the next lsastement. CRUSH
with tree buckets was slightly less efficient, but did almost 25% better than pld@HR (due
to the slightly imbalanced 9-item binary trees in each tree bucket). Removaisaf@RUSH
hierarchy built with list buckets did poorly, as expected (see Section 5.2.3)

Figure 5.6 shows the reorganization efficiency of different bucketgy{n isolation)
when nested items are added or removed. The movement factor in a modifidzlitieet is
bounded by log, the depth of its binary tree. Adding items to straw and list buckets is approx-

imately optimal. Uniform bucket modifications result in a total reshuffle of ddtadifications

108

tree bucket

5] A
£ 16 -
8 O list bucket head
LL 8 - O list bucket tail
-
c X uniform bucket
()
E 4+
()
s 2
= | M
1 ¥ -o0—6—o—Wo

T T T T T T T T T T T T T T 1
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Original Bucket Size

Figure 5.6: Efficiency of reorganization after adding items to different bucket tydeis op-
timal. Straw and list buckets are normally optimal, although removing items from thef @il
list bucket induces worst case behavior. Tree bucket changdmaneled by the logarithm of
the bucket size.

to the tail of a list €. g.removal of the oldest storage) similarly induce data movement propor-
tional to the bucket size. Despite certain limitations, list buckets may be ajgteopr places
within an overall storage hierarchy where removals are rare and al@ wbere the perfor-
mance impact will be minimal. A hybrid approach combining uniform, list, tree, araivs
buckets can minimize data movement under the most common reorganizatiorics@rdle

still maintaining good mapping performance.

5.3.3 Algorithm Performance

Calculating a CRUSH mapping is designed to be fadStlegn) for a cluster withn
OSDs—so that devices can quickly locate any object or reevaluate tperfmtorage targets for
the objects that they already store after a cluster map change. | examineHZRi¢&Hormance

relative to RUSH and RUSH over a million mappings into clusters of different sizes. Fig-

109

30

CRUSH, tree bucket

CRUSH, list bucket ~ /*
25 !
RUSH_T
RUSH_P

AOHO D

/
4
///

20

Time (microseconds)

0 T T
64 512 4096 32768

Cluster Size (OSDs)

Figure 5.7: CRUSH and RUSH computation times scale logarithmically relative to hierarchy
size, while RUSH scales linearly.

ure 5.7 shows the average time (in microseconds) to map a set of replicaRtdSH cluster
composed entirely of 8-item tree and uniform buckets (the depth of thertigris varied) ver-
sus RUSH ’s fixed two-level hierarchy. Theaxis is the number of devices in the system, and is
plotted on a log scale such that it corresponds to the depth of the storagehje CRUSH per-
formance is logarithmic with respect to the number of devices. RJ8#ges out CRUSH with
tree buckets due to slightly simpler code complexity, followed closely by list aad/Huckets.
RUSH- scales linearly in this test (taking more than 25 times longer than CRUSH foi83276
devices), although in practical situations where the size of newly depltigid increases ex-
ponentially over time one can expect slightly improved sub-linear scaling J4gse tests were
conducted with a 2.8 GHz Pentium 4, with overall mapping times in the tens of mitnods.

The efficiency of CRUSH depends upon the depth of the storage Higrand on the
types of buckets from which it is built. Figure 5.8 compares the ti)a€¢quired forc(r, x) to

select a single replica from each bucket type as a function of the size diuitket X). At a

110

O uniform O(1)
944 tree O(log n)
8 - O listo(n)

Time (microseconds)
(6]
1

0 5 10 15 20 25 30 35 40
Bucket Size (items)

Figure 5.8: Low-level speed of mapping replicas into individual CRUSH bucketsusosicket
size. Uniform buckets take constant time, tree buckets take logarithmic timéstaad straw
buckets take linear time.

high level, CRUSH scales &¥logn)—linearly with the hierarchy depth—provided individual
buckets that may b@(n) (list and straw buckets scale linearly) do not exceed a fixed maximum
size. When and where individual bucket types should be used depearttie expected number
of additions, removals, or re-weightings. List buckets offer a slighfioperance advantage over
straw buckets, although when removals are possible one can expessi&ecdata shuffling.
Tree buckets are a good choice for very large or commonly modified tsjckéth decent
computation and reorganization costs.

Central to CRUSH’s performance—both the execution time and the quality of the
results—is the integer hash function used. Pseudo-random valuesleutated using a mul-
tiple input integer hash function based on Jenkin’s 32-bit mast{45]. In its present form,
approximately 45% of the time spent in the CRUSH mapping function is speninigasd-
ues, making the hash key to both overall speed and distribution quality apd garget for
optimization.

111

5.3.3.1 Negligent Aging

CRUSH leaves failed devices in place in the storage hierarchy both leefaluse
is typically a temporary condition (failed disks are usually replaced) andusecit avoids in-
efficient data reorganization. If a storage system ages in neglect, thieemwf devices that
are failed but not replaced may become significant. Although CRUSH wilstrilnlite data
to non-failed devices, it does so at a small performance penalty due tder lngpbability of
backtracking in the placement algorithm. | evaluated the mapping speed f60@ device
cluster while varying the percentage of devices marked as failed. Foeld@/ely extreme
failure scenario in which half of all devices are dead, the mapping calcultte increases
by 71%. (Such a situation would likely be overshadowed by heavily dedri® performance
as each devices’ workload doubles.) Variance in device utilization ineseaisder such cir-
cumstances, with a 17% higher standard deviation at 50% of devices failleal 0% higher

standard deviation at 80% failed.

5.3.4 Reliability

Data safety is of critical importance in large storage systems, where thenlamgger
of devices makes hardware failure the rule rather than the exceptiodoRéed distribution
strategies like CRUSH that decluster replication are of particular intereatibe they expand
the number of peers with which any given device shares data. This hasompeting and
(generally speaking) opposing effects. First, recovery after a éaitan proceed in parallel
because smaller bits of replicated data are spread across a largepasetsyfreducing recovery
times and shrinking the window of vulnerability to additional failures. Secanldrger peer

112

group means an increased probability of a coincident second failureylebared data. With
2-way mirroring these two factors cancel each other out, while overtdl skfety with more
than two replicas increases with declustering [111].

However, a critical issue with multiple failures is that, in general, one carxpeot
them to be independent—in many cases a single event like a power failurphysizal dis-
turbance will affect multiple devices, and the larger peer groups assdacidth declustered
replication greatly increase the risk of data loss. CRUSH’s separaticgpbtas across user-
defined failure domains (which does not exist with RUSH or existing hasked schemes) is
specifically designed to prevent concurrent, correlated failuresdearsing data loss. Although
it is clear that the risk is reduced, it is difficult to quantify the magnitude of thedwvgment in
overall system reliability in the absence of a specific storage cluster coatiign and associ-
ated historical failure data to study. Although | hope to perform such g s$tuithe future, it is

beyond the scope of this thesis.

5.4 Future Work

Because the CRUSH placement algorithm is designed to preserve therogs&dips
of the mapping regardless of individual bucket properties, existingepiaat algorithms for
non-replicated data can easily be supported as new bucket types.rtitulpg, we plan to
implement a consistent hashing bucket type, as it offers attractive rurféimiarge buckets
(usuallyO(1)) with reasonable stability properties.

The primitive rule structure currently used by CRUSH is just complex enaagh

113

support the data distribution policies | currently envision for Ceph. Othstems may have
specific needs that can be met with a more powerful rule structure.

Although data safety concerns related to coincident failures were thergrmutiva-
tion for designing CRUSH, study of real system failures is needed tordigtertheir character
and frequency before Markov or other quantitative models can usechtoage their precise
effect on a system’s mean time to data loss (MTTDL).

CRUSH's performance is highly dependent on a suitably strong multi-inpegén
hash function. Because it simultaneously affects both algorithmic corssstade quality of
the resulting distribution—and speed, investigation into faster hashing teswigat are suffi-
ciently strong for CRUSH is warranted.

Randomized data distributions statistically correlate device utilization with workload
reducing device performance and capacity characteristics to a onegiimahweight metric. |
have conducted some preliminary investigation into overlaying multiple CRUSHinggpnto
the same set of devices to facilitate distribution of data in different “tiergh eeth different
bandwidth versus storage requirements. Further investigation of theabpis necessary to

determine its feasibility.

5.5 Conclusions

Distributed storage systems present a distinct set of scalability challengdsth
placement. CRUSH meets these challenges by casting data placement asiarpadom

mapping function, eliminating the conventional need for allocation metadata atehihdis-

114

tributing data based on a weighted hierarchy describing available storagestructure of the
cluster map hierarchy can reflect the underlying physical organizatidnndrastructure of an
installation, such as the composition of storage devices into shelves, cabimetsws in a data
center, enabling custom placement rules that define a broad class ééptdiceparate object
replicas into different user-defined failure domains (with, say, indégeinpower and network
infrastructure). In doing so, CRUSH can mitigate the vulnerability to correldéice failures
typical of existing pseudo-random systems with declustered replicatiod SERalso addresses
the risk of device overfilling inherent in stochastic approaches by sadgcdiverting data from
overfilled devices, with minimal computational cost.

CRUSH accomplishes all of this in an exceedingly efficient fashion, bothrimstef
the computational efficiency and the required metadata. Mapping calcul&@me(logn)
running time, requiring only tens of microseconds to execute with thousdris/iwes. This
robust combination of efficiency, reliability and flexibility makes CRUSH aneatipg choice

for large-scale distributed storage systems.

115

Chapter 6

Distributed Object Storage

At the petabyte scale, storage systems are necessarily dynamic: theylaireche-
mentally, they grow and contract with the deployment of new storage armhgeissioning
of old devices, devices fail and recover on a continuous basis, agel #anounts of data are
created and destroyed. Effectively maintaining proper levels of replicatio a balanced dis-
tribution of data at scale challenges conventional approaches to staeggement that rely
on centralized controllers and allocation tables.

RADOS is a Reliable, Autonomic Distributed Object Store that provides extellen
performance and reliability while scaling to many thousands of storage deviR&DOS fa-
cilitates an evolving, balanced distribution of data and workload acrossardgrand hetero-
geneous storage cluster while providing applications with the illusion of a dimgjieal object
store with well-defined safety semantics and strong consistency guaraietadata bottle-
necks associated with data layout and storage allocation are eliminatedhitheugse of a

compactcluster mapthat describes cluster state and data layout in ternpagement groups

116

In Ceph, we use a data distributidunction (see Chapter 5) to specify this layout, although
other methods (including an explicit map) are possible. RADOS facilitatessidgleefficient
and consistent data access, and seamless adaptation to cluster chemggsdrtprotocol that
efficiently and safely distributes map changes to OSDs and clients utilizing ttagetoluster.

Replication, failure detection, and failure recovery operations are rednagintel-
ligent OSDs, allowing the system to function with minimal oversight while scaling tnyma
petabytes. A special-purpose object file system called EBOFS (desénilsghapter 7) pro-
vides the necessary interface and safety semantics for low-level clgeage with excellent
performance.

Although a broad range of existing systems implement various forms of data re
cation, it is the careful use of the cluster map that allows RADOS to providaitgie com-
bination of scalability, performance, and consistent data access in ar@dagtonment. Most
significantly, clients holding a copy of the map can access data withoutltiogsaicentralized
object directory or metadata server, and failure detection and recakeperformed in parallel

by OSDs with minimal oversight.

6.1 Overview

A RADOS cluster consists of a large collection of OSDs and a small group of mo
itors responsible for managing OSD cluster membership (Figure 6.1). E&thitZludes a
CPU, some volatile RAM, a network interface, and a locally attached disk driRAID. Mon-

itors require only a small amount of disk space.

117

OSDs Monitors

Object I/0O «— Failure reportlng —
. map distribution
Clients

Figure 6.1: A cluster of many thousands of OSDs store all objects in the system. A small,
tightly coupled cluster of monitors collectively manages the cluster map thathkesthe cur-

rent cluster composition and the distribution of data. Each client instanasexm@ simple
storage interface to applications.

A client running on each host computer exposes an asynchronous 1/O ietéofac
applications utilizing the system, while hiding all of the complexity related to the dynanuc
distributed nature of the storage cluster. This is exemplified by the readsicéesivhich looks
like

read(oid, offset length buffer, onfinish,
whereoid is an object identifier (currently 128 bitsdffsetand length specify a byte range
within the object, andnfinishidentifies a callback to notify the application of completion. The
client conceals the details of the physical location of the object, messagesnged, and any
failure scenarios: as long as the cluster is sufficiently available, the tagewill eventually
complete.

A critical challenge for large-scale distributed systems is reliability: as the aumb
of storage devices scales to petabytes and beyond, the likelihood otdailire and data

loss using conventional reliability mechanisms increases to unacceptaiéeg1hd. Our data

118

safety model is guided by the observation that, beyond the basic limitations ichpp#ee finite
amounts of RAM in most systems, there are two primary reasons why applEstare data.
First, to make the data available to other parties; ordinarily this should to haspquickly
as possible to facilitate efficient data sharing and synchronization beteegerating clients.
Second, for safety or durability: to know that the data will survive devimmver, or other
infrastructure failures. However, strong safety typically comes at adogh synchronous disk
writes and mechanisms like file system journals incur additional latencies tiatddesystem
performance.

For this reason, RADOS disassociatesializationfrom safetyat all levels of the
architecture, while providingtrong consistencgemantics to applications. That is, read and
write operations logically occur in some sequential order, and completed apétetions are
reflected by subsequent read operations. Considering serializataerifm) and safety inde-
pendently allows RADOS to provide excellent performance without compmgx®nsistency
and safety. As a result, the client write interface differs somewhat flamaention:

write (oid, offset length buffer, onack oncommi},
where theonackcallback indicates that the update is visible to subsequent reagshly other
clients), andbncommitindicates that it is safely committed to disk. More specifically, although
updates are atomic in all circumstancask is a promise that strong consistency semantics
(ordering, in particular) will be preserved, provided the client dodsrash before @ommit
is received (clients may need to be able to replay any updates for whicldithept receive a
commit).

Although commit notification is provided to the application via a callback, it can

119

safely be (and is usually) ignored. Similarly, although the client process sowgive long
enough to see a commit to ensure strong consistency is maintained, a cliend fgiically
means a failure of the application as well, in which case update ordering Sesnare usu-
ally moot. Of course, clients requiring strong safety can simply ignoreateand receive
performance comparable to systems based on synchronous writes.

RADOS provides excellent performance, reliability, and scalability via theyede-

sign features.

e The distribution of data and cluster state are managed by manipulahg a compact
cluster map The map includes a compact hierarchical description of the devices partic-
ipating in the cluster that is used by CRUSH, a globally known mapping functain th
maintains a balanced pseudo-random distribution of objects while takingakpaie to
maintain data safety. This provides all parties—clients and storage delikes-with
complete knowledge of the distribution of data: object locations are calculeted
needed, without any need to consult a centralized object directoryeabhsa small,
tightly coupled cluster ofmonitorsare collectively responsible for managing the map,

and through it, the cluster.

e Synchronization is disassociated from safetin the update protocol. This facilitates ef-
ficient concurrent access to the same objects, while still providing stedatysemantics

when applications require it.

e RADOS leverages device intelligence to distribute data replication, failie detection,

failure recovery, and data migration. OSDs accomplish this distributed management

120

by observing cluster map differences among peers and following a pesgarithm to
maintain consistency and the proper distribution and replication of data. téipdee
applied using a combination of primary-copy replication, chain replicatioh @&d a
hybrid scheme in order to minimize update latency while providing strong consjste
and data safety semantics. Clients are spared most of the complexity slinguaiata

replication in a dynamic environment with an evolving data distribution.

| begin by describing the distribution of data and management of the clustemmap
Section 6.2. Section 6.3 describes the replication of objects, the reliablesgiog of object
reads and updates, and distributed failure recovery. | also discustsg@igicipation in recovery,
as well as the ObjectCacher module, which facilitates both efficient clienatpe and locking

for atomic multi-object operations. | evaluate performance and scalabilityatoBes.4.

6.2 Distributed Object Storage

RADOS achieves excellent scalability by eliminating the controllers and gateway
servers present in most storage architectures. Instead, clientvanedifiect access to storage
devices. This is enabled by CRUSH, which provides clients and OSDs witiplete knowl-
edge of the current data distribution. When device failures or clustamnsipn require a change
in the distribution of data, OSDs communicate amongst themselves to realize thhtit,
without any need for controller oversight.

The RADOS cluster is managed exclusively through manipulation afltteter map

a small data structure that describes what OSDs are participating in thgesttester and

121

Objects 1] | 1 [] [

|
W l (nrep, hash(oid) & mask)
—pgid

PGs [g?':'

CRUSH(rule ., pgid
—(, 0sd2, 0sd3

filter (, 08d2, 0sd3
—» (0sd2, osd3

)
)
)
osbs *)
(grouped by

failure domain)

Figure 6.2: Objects are grouped infplacement group$PGs), and distributed to OSDs via
CRUSH, a specialized replica placement function. Failed O8Dg. psd1) are filtered out of
the final mapping.

how data is mapped onto those devices. A small cluster of highly-reliablétorsare jointly
responsible for maintaining the map and seeing that OSDs learn about chatees. Because
the cluster map is small, well-known, and completely specifies the data distribcitemts are
able to treat the entire storage cluster (potentially tens of thousands of)resda single logical

object store.

6.2.1 Data Placement

RADOS employs a data distribution policy in which objects are pseudo-randisnly
signed to devices. When new storage is added, a random subsampkiofedata is migrated
to new devices to restore balance. This strategy is robust in that it maintarobabilistically
balanced distribution that, on average, keeps all devices similarly loaliteaing the system
to perform well under any potential workload [84]. Most importantly, gatecement takes the
form of a pseudo-random function thealculatesthe proper location of objects; no large or

cumbersome centralized allocation table is needed.

122

Each object stored by the system is first mapped infdagement grougPG), a
logical collection of objects that are replicated by the same set of devE®sttaFaRM [112].
Each object’s PG is determined by a hash of the object raniee desired level of replication
r, and a bit maskn that controls the total number of placement groups in the system. That is,
pgid = (r,hasl{o)&m), where & is a bit-wise AND and the mask= 2X — 1, constraining the
number of PGs by a power of two.

As the cluster scales, it is periodically necessary to adjust the total nurhplerce-
ment groups. During such adjustments, PG contents can be split in two mgaddit tom.
However, to avoid a massive split from simultaneously affecting all placegrenips in the
system—resulting in a massive reshuffling of half of all data—in practiceeptace than
mask with the stablemdg, n,m) function, wheren& m= n andn&m = 0 (where the bar indi-
cates a bit-wise NOT). That igpgid = (r, stablemoghast{o),n,m)). This similarly constrains
the range ofpgid while allowingn to beanynumber of PGs—not just a power of two.X&m
is less tham, we proceed as before. Otherwise, stablefrgdm) returnsx& (m > 1) (see
Algorithm 3). This provides a “smooth” transition between bit masksuch that PG splits can

be spread over time.

Algorithm 3 Function to constrain the number of PGs. Note that 2k_1 n&m=n, and
n&m=0.

1: procedure STABLEMOD(X, n, m) > Choose between maskandm > 1
2: if X&m < nthen

3 returnx&m > Use larger mask.
4 else

5: returnx& (m:>> 1) > Use smaller mask.
6 end if

7: end procedure

Placement groups are assigned to OSDs using CRUSH (see Chaptgusglido-

123

random data distribution function that efficiently maps each PG to an ordisted r OSDs
upon which to store object replicas. From a high level, CRUSH behaves diniaa hash
function: placement groups are deterministically but pseudo-randomliybdistd. Unlike a
hash function, however, CRUSH is stable: when one (or many) devigesijteave the clus-
ter, most PGs remain where they are; CRUSH shifts just enough data to mairitalanced
distribution. In contrast, hashing approaches typically force a reshafffall prior mappings.
CRUSH also uses weights to control the relative amount of data assignaditalevice based
on its capacity or performance.

Placement groups provide a means of controlling the level of replicatidnsterdng.
That is, instead of an OSD sharing all of its replicas with one or more dewvicieso(ing), or
sharing each object with different device(s) (complete declusteringumber of replication
peers is related to the number of PGdt stores—typically on the order of 100 in the current
system. As a cluster grows, the PG maslcan be periodically adjusted to “split” each PG
in two. Because distribution is stochastjc,also affects the variance in device utilizations:
more PGs result in a more balanced distribution. More importantly, declustiadilgates
distributed, parallel failure recovery by allowing each PG to be indepehdees-replicated
from and to different OSDs. At the same time, the system can limit its exposem@rtaident

device failures by restricting the number of OSDs with which each devicgesltammon data.

6.2.2 Cluster Maps

The cluster map provides a globally known specification of which OSDsaponsi-

ble for storing which data, and (more significantly) which devices are atldav@rocess object

124

epoch: map revision
m: number of placement groupsl
up: OSD+— { network addressjown}
in: OSD~ { in, out}
crush: CRUSH hierarchy and placement rules

Table 6.1: Data elements present in the OSD cluster map, which describes both cluster sta
and the distribution of data.

reads or updates. Each time the cluster map changes due to an OSD stages e map
epochis incremented. Map epochs allow all parties to agree on what the cuistribwation

of data is, and to determine when their information is (relatively) out of daga@se cluster
map changes may be frequent, as in a very large system where OSDasfaihd recoveries
are the norm, updates are distributedrassemental mapssmall messages describing the dif-
ferences between two successive epochs. In most cases, sathaupidhply state that one or
more OSDs have failed or recovered, although in general they may instatles changes for
many devices, and multiple updates may be bundled together to describe¢hendiéf between

distant map epochs.

6.2.2.1 Down and Out

The cluster map’s hierarchical specification of storage devices is compiethby
the current network address of all OSDs that are currently online eaxchable §p), and in-
dication of which devices are currentiown RADOS considers an additional dimension of
OSD liveness:in devices are included in the mapping and assigned placement groups, while
out devices are not. For each PG, CRUSH produces a list of exa€gDs that aren the

mapping. RADOS then filters out devices that dosvnto produce the list of active OSDs for

125

the PG. If the active list is currently empty, PG data is temporarily unavailatdepanding I/0
is blocked.

OSDs are normally bothp andin the mapping to actively service 1/O, or badbwn
andoutif they have failed, producing an active list of exaatipSDs. OSDs may also lakwn
but still in the mapping, meaning that they are currently unreachable but PG datathget n
been remapped to another OSD (similar to the “degraded mode” in RAID systeikswise,
they may baup andout, meaning they are online but idle. This facilitates a variety of scenarios,
including tolerance of intermittent periods of unavailabiligy §. an OSD reboot or network
hiccup) without initiating any data migration, the ability to bring newly deployedsteonline
without using it immediatelyd. g. to allow the network to be tested), and the ability to safely

migrate data off old devices before they are decommissioned.

6.2.3 Communication and Failure Model

RADOS employs an asynchronous, ordered point to point messagegdébgary
for communication. For simplicity, the prototype considers a failure on the TdcRes to
imply a device failure, and immediately reports it. OSDs exchange perioditbeahmessages
with their peers to ensure that failures are detected. This is somewhaireatnge in that an
extended ethernet disconnect or a disruption in routing at the IP levetavi$e an immediate
connection drop and failure report. However, it is safe in that any faibdithe process, host,
or host’'s network interface will eventually cause a dropped conneclibis strategy can be
made somewhat more robust by introducing one or more reconnection atterbetser tolerate

network intermittency before reporting a failure. OSDs that discover tegtthve been marked

126

downsimply sync to disk and kill themselves to ensure consistent behavior.

6.2.4 Monitors

All OSD failures are reported to a small clustemabnitors which are jointly respon-
sible for maintaining the master copy of the cluster map. OSDs can requestdasieclaister
map from or report failures to any monitor. When an OSD submits a failu@tgpexpects
to receive an acknowledgement in the form of a map update that marksildee @SD down
(or backup at a new address). If it does not get a response after a few sedosmnply tries
contacting a different monitor.

In order to ensure that responses from all monitors are consistent, tiitonwuster
is based on the Paxos part-time parliament algorithm to preserve strongtenog between
replicas [54]. Unlike primary-copy or similar replication schemes, the Palgarithm em-
phasizes the durability of updates over availability by requiring that a majdrityomitors be
available before updates are possible. The monitor cluster simplifies pxws Bamewhat by
allowing only a single update to be proposed at a time (much like Boxwood, [6i8jplify-
ing the implementation, while also coordinating updates wikbagdemechanism to provide a
consistent ordering of cluster map read and update operations.

The cluster initially elects beaderto serialize map updates and manage consistency.
Once elected, the leader begins by requesting the map epochs storeth loyarator. Monitors
have a fixed amount of tim& (currently two seconds) to respond to the probe and join the
guorum The leader ensures that a majority of the monitors are active and thatthéasost

recent map epoch (requesting incremental updates from other monitoesessary), and then

127

begins distributing short-term leases to active monitors.

Each lease grants active monitors permission to distribute copies of the chagi¢o
OSDs or clients who request it. If the lease térraxpires without being renewed, it is assumed
the leader has died and a new election is called. Each lease is acknowledigedeader upon
receipt. If the leader does not receive timely acknowledgements whemlease is distributed,
it assumes an active monitor has died and a new election is called. When a rficstitstarts
up, or finds that a previously called election does not complete after anaale interval, an
election is called.

When an active monitor receives an update requesty.(a failure report), it first
checks to see if it is a new. If, for example, the OSD in question was alneaageddown
the monitor simply responds with the necessary incremental map updates tthiermegorting
OSD up to date. New failures are forwarded to the leader, who serialpgas, increments
the map epoch, and uses the Paxos update protocol to distribute the upoldier tmonitors,
simultaneously revoking leases. Once the update is acknowledged by d@ynafjononitors a
final commit message issues a new lekse.

The combination of a synchronous two-phase commit and the probe inferal
sures that if the active set of monitors changes, it is guaranteed thaballgases (which have
a matching ternT) will have expired before any subsequent map updates take placseCon
guently, any sequence of map queries and updates will result in a comgigigression of map
versions—significantly, map versions will never “go backwards"—rdlgss of which moni-

tor messages are sent to and despite any intervening monitor failuregjgat@ majority of

1The integration of Paxos with a leasing mechanism is implemented as a gesmwiie and is used to manage
other critical state in Ceph, including the MDS cluster map and state for ic@i@h client access to the file system.

128

monitors is available.

6.2.5 Map Propagation

Because the RADOS cluster may include many thousands of devices oritsnet
practical to simply broadcast map updates to all parties without unduly mimgiéhe central
monitors. Fortunately, differences in map epochs are significant onip tey vary between
two communicating OSDs (or between a client and OSD), which must agreesimrptbper
roles with respect to a particular PG. This property allows RADOS to distrilmate updates
lazily by combining them with existing inter-OSD messages, shifting the distributicateln to
OSDs. Each OSD maintains a history of past map incrementals, tags all negdthges latest
epoch, and makes note of its peers’ epochs. If an OSD receives agedssm a peer with
an older map, it shares the necessary incremental(s) to bring that pgacirSsmilarly, when
contacting a peer thought to have an older epoch, incremental updaf@eamptively shared.
The heartbeat messages periodically exchanged for failure detectioreghat updates spread
quickly—in O(logn) time for a cluster ofi OSDs.

For example, when an OSD first boots, it begins by informing a monitor thatss h
come online, and sends its current map epoch. The monitor cluster chbhadg@SD’s status to
up, and replies with the incremental updates necessary to bring the OSD futlydape. When
the new OSD begins contacting OSDs with whom it shares data (see Sectmi) Bie exact
set of devices who are affected by its status change learn about trepepfe map updates.
Because a booting OSD does not yet know which epochs its peersitsivares a safe recent

history (e. g.at least 30 seconds) of incremental updates.

129

This preemptive map sharing strategy is conservative: an OSD will alglzstre an
update when contacting a peer unless it is certain the peer has alreadly seulting in OSDs
receiving duplicates of the same update. However, the number of dupl@at®SD receives
is bounded by the number of peers it has, which is in turn determined by thieerwf PGsu
it manages. In practice, | find that the actual level of update duplicationd mower than this

(see Section 6.4.1.3).

6.3 Reliable Autonomic Storage

RADOS replicates each data object on two or more devices for reliability ail a
ability. Replication and failure recovery are managed entirely by OSDsghrawersion-based
consistency scheme utilizing short-term update logs. A peer to peer rgquegocol avoids
any need for controller-driven recovery, facilitating a flat clusteh#ecture with excellent

scalability.

6.3.1 Replication

Storage devices are responsible for update serialization and write tiEpljcshifting
the network overhead associated with replication from the client netwodx to the OSD
cluster’s internal network, where greater bandwidth and lower latemc®xpected. RA-
DOS implements primary-copy replication [3], chain replication [96], andlaibyl call splay
replication that combines elements of the two. All three strategies providegstmnsistency

guarantees, such that read and write operations occur in some selquelgiiaand completed

130

© client & osb1 5 osb2 £ osb3 [osb4
Primary-copy

—p Write

' (Delay write
Chain > 3 Apply write
---+ Ack
N+1 hops
------------------------ > Reads
Splay
P

Figure 6.3: Replication strategies implemented by RADOS. Primary-copy processe<ioith r
and writes on the first OSD and updates replicas in parallel, while chaimfdswrites sequen-
tially and processes reads at the tail. Splay replication combines paralbiespalith reads at
the tail to minimize update latency.

writes are reflected by subsequent reads.

With primary-copy replication, the first OSD in a PG’s list of active devicethes
primary, while additional OSDs are callegplicas Clients submit both reads and writes to
the primary, which serializes updates within each PG. The write is forwand#ee replicas,
which apply the update to their local object store and reply to the primarye @hoeplicas are
updated, the primary applies the update and replies to the client, as showniia €i8.

Chain replication separates update serialization from read processiitgs \&te di-
rected at the first OSD (theead, which applies the update locally and forwards it to the next
OSD in the list. The last OSD (th@il) responds to the client. Reads are directed at the tail,
whose responses will always reflect fully replicated (thus, safeljiexhpupdates. For 2
replication, this offers a clear advantage: only three messages andkéygs are necessary,

versus four for primary-copy replication. However, latency is depahdn the length of the

131

© Client 3 Head 3 Replica 8 Tail

—> Write

g Delay write
______________ . 3% Apply update
T | S - o i Ack
————— “:’ —=p Commit to disk
~~~~~~~~~~~~ ——+ Commit
R

Figure 6.4: RADOS responds with aackafter the write has been applied to the buffer caches
on all OSDs replicating the object (shown here with splay replication). Clitdy & has been
safely committed to disk is a secondmmitnotification sent to the client.

chain, making the strategy problematic for high levels of replication.

Splay replication combines elements of the two. As with chain replication, updates
are directed at the head and reads at the tail. For high levels of replicatimeyer, updates
to the middle OSDs occur in parallel, lowering the latency seen by the client. Biotiany-
copy and splay replication delay the local write in order to maintain strongstensy in the
presence of an OSD failure, although splay must do so for less time, l@v@@®D memory

requirements.

6.3.2 Serialization versus Safety

RADOS disassociates write acknowledgement from safety at all leveldir ¢o
provide both efficient update serialization and strong data safety. Tpisagh is illustrated in
Figure 6.4, which corresponds to the splay scheme shown in Figure 6.3matiditional set
of messages. During a replicated write, each replica OSD senaskan the tail immediately
after applying the update to the in-memory cache of the local EBOFS objeet siiod the

tail responds to the client with ackonly after all replicas have applied the update (as before).

132



Later, when EBOFS provides each OSD with asynchronous notificatibththepdate is safely
committed to disk, they send a second message to the tail, and only after allséphesdone so
is the client sent a fin@lommit The strategy is similar for the other schemes: with primary-copy
replication,acks andcommitsgo to the primary instead of the tail, and with chain replication,
only commitsgo to the tail (the replicated update itself is an implagk).

Once clients receive aack, they can be sure their writes are visible to others, and
synchronous application level calls can typically unblock. Clients buffendates until a
commitis received, however, allowing clients to participate in recovery if all OBipsicating

the update fail, losing their in-memory (uncommitted) state.

6.3.3 Maps and Consistency

Tagging all RADOS messages—both those originating from clients and ftber o
OSDs—uwith the map epoch ensures that all update operations are appliadljncansistent
fashion. Because all replicas are involved in any given update operatity relevant map
updatesi( e. any update that changes PG membership) will be discovered. Even if thermas
copy of the cluster map has been updated to change a particular PGs nteémhgdates may
still be processed by the old members, provided they have not yet highaelahange. Because
a given set of OSDs who are newly responsible for a PG cannot beactiae {. e. recover or
service 1/0O) without consulting prior members or determining they are faitsi%ection 6.3.5),
no updates can be lost, and consistency is maintained.

Achieving similar consistency for read operations is slightly less naturalftirarp-

dates. In the event of a partial network failure that results in an OSDntiegoonly partially

133



Log Missing
op object version 4 to object _version
def | 3'3 P def | 4’10

ghi| 34 abc | 511
abc| 35 last_complete

ghi | 47

def | 4’8
ghi | 49
def | 410

abc 5:11 last_update
abc | 512 bottom

F §

© = update
X = deletion

time
o|lo|o|x|x|o|o|e|o

A A

Figure 6.5: Each PG has a log summarizing recent object updates and deletions. The mos
recently applied operation is indicated st update All updates abovdast completeare
known to have been applied, while any missing objects in the interval betl@secomplete
andlast.updateare summarized in the missing list.

unreachable, the OSD servicing reads for a PG could be declaredi"fhilestill be reachable

by clients with an old map. Meanwhile, the updated map may specify a new OSD Iadts p

In order to prevent any read operations from being processed myd@SD after new updates
are be processed by the new one, we require timely heartbeat messtgesbOSDs in each
PG in order for the PG to remain available (readable). That is, if the OSIizsey reads hasn't
heard from other replicas iH seconds, reads will block. Then, in order for a new OSD to take
over that role from another OSD, it must either obtain positive acknowlaeégt from the old
OSD (ensuring they are aware of their role change), or delay for the e interval. In my
implementation, | choose a relatively short heartbeat interval of two sscdiinis ensures both
timely failure detection and a short interval of PG data unavailability in the edfemprimary

OSD failure.

134



6.3.4 \Versions and Logs

RADOS uses versioning to identify individual updates and to serialize thighinw
each placement group. Each version consists ¢épach,v)pair, whereepochreflects the map
epoch at the time of the update, andncreases monotonically. Each PG hakst update
attribute that reflects the most recently applied modification to one its objecteaahdbject
has a similar version attribute to reflect the last time it was modified.

OSDs maintain a short-term log of recent updates (illustrated in Figure 6.8x&m
PG, stored both on disk and in RAM or NVRAM (if it is available). Each log gmicludes
the object name, the type of operation (update, delete), a version numiigfiyidg the update,
and a unique request identifier consisting of the client name and a cliegh@dsdentifier (not
shown). Unigue identifiers allow OSDs to detect and ignore duplicate sexjuendering all
operations idempotent.

The first OSD in the PG serializes writes by assigning a new version numier a
appending a new entry to its log. Because by definition only one OSD fills thésduring
a single map epoch, versions are unique within each PG. The request iotivarded along
with the version stamp to all other replica OSDs (or just to the next replicdfinceplication).
An OSD processing an update always writes to the log immediately, even if jiditla write
for consistency. For this reason, the log may extend belovastaupdatepointer {. e. write-
ahead).

Log appends or pointer changes are written to disk wrapped in atomic EB@#S

actions with the updates they describe, such that the log provides atpedecd of which

135



updates were (and were not) committed before any crash (see Sectiomhe1dg also forms
the basis for recovery when a PG is being brought up to date or replitagedentirely new
OSD. All updates below th&ast. completeare known to be applied locally, while rissing
list summarizes the latest versions of modified objects above it. OSDs pelipdita their
on-disk logs when requests have been fully flushed to disk on all replizéslients have been

notified.

6.3.5 Failure Recovery

RADOS failure recovery is driven entirely by cluster map updates andesuent
changes in each PG's list of active devices. Such changes may be daeide failures, re-
coveries, cluster expansion or contraction, or even complete datdftiegfiiom a totally new
CRUSH replica distribution policy—RADOS makes very few assumptions albat kind of
map changes are possible. For example, a PG might go from three OSDsetgancomplete
power failure) to one OSD (after partial power is restored) and then tcetvicely different
OSDs (a reorganization), and these changes may happen very quiitklyut a sufficient in-
terval between each transition to allow recovery to complete. Moreovemn ah OSD crashes
and recovers, EBOFS object store will be warped back in time to the mastitrenapshot
committed to disk.

In all cases, RADOS employs a robysteringalgorithm to establish a consistent
view of PG contents and to restore the proper distribution and replicatioataf @his strategy
relies on the basic design premise that OSDs aggressively replicate theyR@dats record

of what the current state of a Pshouldbe (. e. what object versions it contains), even when

136



some object replicas may be missing locally. Thus, even if recovery is sldwlgact safety is
degraded for some time, PG metadata is carefully guarded, simplifying theergadgorithm

and allowing the system to reliably detect data loss.

6.3.5.1 Peering

When an OSD receives a cluster map update, it walks through all new nremiec-
tals up through the most recent to examine and possibly adjust PG state valyekcally
stored PGs whose active list of OSDs changes are mankeative indicating that they must
re-peer. Considering all map epochs (nhot just the most recent) sniateintermediate data
distributions are taken into consideration: if an OSD is removed from a PGhemdadded
again, it is important to realize that intervening updates to PG contents maptaweed. As
with replication, peering (and any subsequent recovery) proceddpandently for every PG
in the system.

The process is driven by the first OSD in the PG {phienary). For each PG an OSD
stores for which it is not the current primaiy€. it is areplica, or astraywhich is longer in the
active set), aNotify message is sent to the current primary. This message includes basic state
information about the locally stored PG, includilagt update last completethe bounds of the
PG log, andast epochstarted which indicates the most recent known epoch during which the
PG successfully peered.

Notify messages ensure that an OSD that is the new primary for a PG disdsveew
role without having to consider all possible PGs (of which there may be millfongyery map

change. Once aware, the primary generaesa set, which includes all OSDs that may have

137



participated in the PG sindast epochstarted Because this is a lower bound, as additional
notifies are received, its value may be adjusted forward in time (and thesptioeduced). The
prior set is explicitly queried to solicit a notify to avoid waiting indefinitely for aoprOSD
that does not actually store the P& §. if peering never completed for an intermediate PG
mapping).

Armed with PG metadata for the entire prior set, the primary can determine the most
recent update applied on any replica, and request whatever log fnégyare necessary from
prior OSDs in order to bring the PG logs up to date on active replicas. Thtteprimary
must assemble a log that stretches from the oldest log bottom on active seplittee newest
log bottom (most recent update) on any prior OSD. Because the log dldgteerecent history,
this may not be possiblee( g. if the primary is new to the PG and does not have any PG
contents at all), making it necessary for the primary to generate or resjo@sklog A backlog
is an extended form of the log that includes entries abovedp@ointer (where the log was
last trimmed) to reflect any other objects that exist in the P@. (on disk) but have not been
modified recently. The backlog is generated by simply scanning locally sRfeezbntents and
creating entries for objects with versions prior to the log top. Because & wiatereflect prior
deletions, the backlog is only a partial record of the PG’s modification history

Once the primary has assembled a sufficient log, it has a complete pictueernbst
recent PG contents: they are either summarized entirely by the log (if it haskéoh), or the
recent log in combination with locally stored objects. From this, the primarytepd@missing
list by scanning the log for objects it does not have (those updated aftegvispslast updats.

All OSDs maintain a missing list for active PGs, and include it when logs angestgd by the

138



primary. The primary can infer where objects can be found by lookinghatwOSDs include
the object in their log but don't list it as missing.
Once the log and missing list are complete, the PG is ready to be activated. The

primary first sends a message to all OSDs in the prior set (but not in the aet) to update

last epochstarted Once this is acknowledged, the primary sets its own Pé&&tive and sends

a log fragment to each OSD in the active set to bring them up to date and marlattere

as well. Updatindast epochstartedon residual OSDs implicitly renders thesbsoletean that

they know the PG became active in an epoch after tlasirupdateand their information is
likely out of date. In the future, a primary left with only obsolete informatianirits prior set

can opt to either consider itself crashed or, if an administrator is despleriag the PG online

with potentially stale data.

6.3.5.2 Recovery

A critical advantage of declustered replication is the ability to parallelize faikete
covery [4, 112]. Replicas shared with any single failed device areadpseross many other
OSDs, and each PG will independently choose a replacement, allowieglreation to just as
many more OSDs. On average, in a large system, any OSD involved in rgdova single
failure will be either pushing or pulling content for only a single PG, makingvery very fast.

The recovery strategy in RADOS is motivated by the observation that 1/0 i$ mos
often limited by read (and not write) throughput. A simple recovery stratefyr isach OSD
to independently walk through its PG log and “pull” any objects on its missing bsh fother

OSDs, updatingast completealong the way, until it reaches the bottom of the log. Although

139



this strategy works (and was used by previous versions of the systdra$, titvo limitations.

First, if multiple OSDs are independently recovering objects in the same PGraheir
covery will not be synchronized. That is, they will probably not pull Haene objects from the
same OSDs at the same time, resulting in duplication of the most expensivé efspeovery:
seeking and reading. Second, the update replication protocols (d=sariBection 6.3.1) be-
come increasingly complex if replica OSDs are missing the objects being modiiigugh
the primary OSD can simply delay updates on missing objects until they aresredofsince
it is responsible for ordering requests), replicas do not have thabiflgx which significantly
complicates consistency logic.

For these reasons, recovery in RADOS is coordinated by the primaiyefase, op-
erations on missing objects are delayed until the primary has a local come ®i@ primary
already knows which objects all replicas are missing from the peeringggsod can preemp-
tively “push” any missing objects that are about to be modified to replica QSPwlifying
replication logic while also ensuring that the object is only read once. Ipkceeis handling
reads, as in splay replication, requests for missing objects are delatiethermbject can be
pulled from the primary. If the primary is pushing an objextd.in response to a pull request),
or if it has just pulled an object for itself, it will always push to all replicaattheed a copy
while it has the object in memory. Thus, in the aggregate, every re-regliobject is read only

once.

140



6.3.5.3 Client Participation

If a RADOS client has an outstandinig €. un-acked or uneommittedl request sub-
mitted for a PG that experiences a failure, it will simply resubmit the requéett (he same
unigue request identifier) to the new PG primary. This ensures that if thesewas not com-
pletely replicated or otherwise did not survive the failure, it will still be mesed. If the OSD
discovers the request was already applied by the request’s praaghedog, it will consider
the operation ao-op but will otherwise process.(e. replicate) it normally so that the client

still receives arackandcommitwith the same associated promises.

6.3.5.4 Concurrent Failures

If all OSDs participating in a PG simultaneously fail, the PG is said to lceaghed
and data becomes unavailable until at least one device comes back entjrefier a temporary
power failure). Recovery, however, is hindered by the probabledbssme updates that were
applied and serialized but existed only in RAM. This is problematic, because slients may
have already read the applied (but uncommitted, and now lost) updates.

In order to preserve strong consistency in such situations, OSDs initladersion
associated with each update in the cliagk, and the RADOS client buffers all updates it sub-
mits until a finalcommitis received. If a PG with which it has uncommitted updates crashes, the
client includes the previously assigned version with the resubmitted redivbstn a crashed
PG is recovering, OSDs enterreplay period for a fixed amount of timee( g. 30 seconds)
after peering but before becoming active. The primary OSD buffersasts such that when the
replay period ends, it can reorder any requests that include vetsiosasstablish the original

141



order of updates.

From the client’'s perspective, this preserves consistency: the versiaber in the
ack allows the client to reassert the correct ordering (if need be), as Biigeaclient doesn’t
fail before receiving a&commit As described, however, the strategy has a critical flaw that
compromises strong consistency semantics: if a read operation is allowethafigodate is
applied and thackis sent, such that it sees the effects, but the OSD subsequently failthatich
the ack (and update version) never reaches the client, the client will be unabbassert the
previously established (and withessed) ordering. Although it is improb#i#geasynchronous
messaging model makes such a scenario possible. In fact, it would be iblpdesthe OSD
to be sure the client received the ack without the client confirming it with ditiadal message
(like a two-phase commit) and an associated increase in latency and pratogalexity.

For this reason, RADOS can delay reads to uncommitted data, while takingateps
expedite their commit to disk (see Figure 6.6). This approach maintains a lowydtenvrites,
and only increases latency for reads if two operations are actually depef e. reference
overlapping byte ranges in a data object, a relatively rare occurrentmsh workloads [8,
77]). Alternatively, a small amount of NVRAM can be employed on the OSDFG log
storage, allowing serialization to be preserved across power failurhgtsat resubmitted client

operations can be correctly reordered, similarly preserving fully ctamtisemantics.

6.3.6 Client Locking and Caching

Although individual object updates are both strongly consistent and atonany

applications require atomicity across multiple objects [63, 100]. In contrasydtems that

142



©clent B Head EReplica BTal _, wiite

( Delay write

%% Apply update
---+ Ack
"""""""" » Commit to disk
— =% Commit

< Read
) Delay read

Figure 6.6: Reads in shared read/write workloads are usually unaffected by wetatgns.
However, reads of uncommitted data can be delayed until the update comnigsndreases
read latency in certain cases, but maintains a fully consistent behavicoriourrent read and
write operations in the event that all OSDs in the placement group simultdpdaiisnd the
write ackis not delivered.

use a distributed lock manager [51, 86, 94, 107], RADOS locks aredszue enforced by
the OSDs that store objects. Read (shared) and write (exclusive) dmekisnplemented as
object attributes, and lock acquisition and release behave like any ofjeet apdate: they are
serialized and replicated across all OSDs in the PG for consistency fatyl $acks can either
time out {. e. be treated as leases) or applications can empower a third party to revb&baih
of failed clients.

An ObjectCachemodule layers on top of the RADOS client to manage client lock
state and provide basic object caching services and multi-object updetesObjectCacher
transparently acquires the necessary locks to achieve proper aatsistency (read locks on
cached objects and write locks to allow write-back). Write locks can alsosbd to mask
latency associated with large updates: ordering is established when ttie &mxjuired, and is
released asynchronously as the data is written back to the OSD. Opemtionstiple objects

practice deadlock avoidance during lock acquisition.

143



—~—= no replication
-=---= 2x replication
——= 3x replication

Per-OSD Throughput
(MB/sec)

4 16 64 256 1024 4096

Write Size (KB)

Figure 6.7: Per-OSD write performance. The horizontal line indicates the upper limit iethos
by the physical disk. Replication has minimal impact on OSD throughput, althdute
number of OSDs is fixed)-way replication reduces totaffectivethroughput by a factor aof
because replicated data must be written ©@@SDs.

6.4 Performance and Scalability

| examine the performance, scalability, and failure recovery behavitredRADOS
architecture. | begin by examining the performance of individual OSBs ezaluate write la-
tency in light of the three replication strategies | implement. Scalability is considedepen-
dently in terms of the specific performance-limiting factors. Finally, | discassre recovery
and its effect on system performance.

Performance tests are conducted using OSDs running on dual-proétsstiums
with SCSI disks. In my experiments, RADOS achieves perfect linear scafirng 24 OSDs,

after which throughput is limited by the network switch.

6.4.0.1 OSD Throughput

| first measure the 1/0O performance of a 14-node cluster of OSDs. d-@gjudrshows

per-OSD throughputyj with varying write sizesX) and replication. Workload is generated by

144



N
o

no replication P
g """ 2x replication J/
;’15 ~ 3x replication /,
= « sync write /s
210 x sync lock, async write /,{,«/ ______
g
[}
£5
; p—— i okl

T 1
16 64 256 1024
Write Size (KB)

Figure 6.8: Write latency for varying write sizes and primary-copy replication. Morantha
two replicas incurs minimal additional cost for small writes because replicgiddtes occur
concurrently. For large synchronous writes, transmission times dominaat<partially mask
that latency for writes over 128 KB by acquiring exclusive locks anahelssonously flushing
the data.

400 clients on 20 additional nodes. Performance is ultimately limited by the ravaikvidth
(around 58 MB/sec), shown by the horizontal line. Replication doublesiies disk /O,

reducing client data rates accordingly when the number of OSDs is fixed.

6.4.0.2 Write Latency

Figure 6.8 shows the synchronous write latengyf¢r a single writer with varying
write sizes X) and primary-copy replication. Because the primary OSD simultaneously re-
transmits updates to all replicas, small writes incur a minimal latency increaseoci@ than
two replicas. For larger writes, the cost of retransmission dominates; 1 NM8swnot shown)
take 13 ms for one replica, and 2.5 times longer (33 ms) for three. High uladateies are
mitigated for writes over 128 KB with the client ObjectCacher module, which usdssve
locks to establish serialization for large writes, while flushing data to OSDsedeasing locks
asynchronously. Under such circumstances, latencies are deternyitieel éxchange of lock

145



{ = primary—copy .
3 | "*-* chain .
| === splay e

Write Latency (ms)
N
|

0 T T T T T T 1
1 2 3 4 5 6 7 8
Replication Level (replicas)

Figure 6.9: Latency for 4 KB writes under different replication strategies and leveisi-
cation. Splay replication augments chain replication with parallel replica updatachieve
performance similar to primary-copy replication for high levels of replication.

requests, providing latency for isolated large writes which approachéesftsmall writes.

Figure 6.9 shows the latency associated with different replication strafegissall
4 KB writes. Although chain replication offers the lowest latency far i2plication, where a
minimum number of messages are exchanged, it performs poorly with langleensi of repli-
cas. Primary-copy masks the latency for replication abovéh® parallelizing updates. Splay
replication combines the best of both approaches—optimal message gadbha@x and par-
allel updates with more replicas—with the added bonus of lowering memory utilizatidhe
tail OSD.

Figure 6.10 shows latency incurred per repligafor various replication levelsx]
with 1 MB writes. For large writes, the benefits of parallel updates are limitepemdevice
bandwidth limitations. Here, the crossover point shifts from arourd@ 5x, giving chain

replication a slight edge.

146



= 147 .

L 1 ——* primary—copy
g{ 13 R -e---0 chain

3 ] == gpla
ERTRERN play

> N\

2

Q 114 e T

= i

—

@ 10+

; 9 T T T T T T 1

[EEY
N

3 4 5 6 7 8
Replication Level (replicas)

Figure 6.10: Normalized write latency per replica for 1 MB writes under different repiica
strategies and levels of replication. Parallel replication does not improve)afier replications
levels below six.

6.4.1 Scalability

The scalability of RADOS is potentially limited by three primary factors: the qual-
ity of the data distribution generated by CRUSH, interaction with the monitor c|wstdrthe
effective distribution of cluster map updates. Other elements of the sysetnvaally par-
allelizable. In particular, failure detection, failure recovery, and repbioaare all bounded on
each OSD by the number of peers, regardless of the cluster size. mirposes, | assert that a
sufficiently large and fast network can be constructed to service mangahds of OSDs [42].
CRUSH includes some provisions for segregating replication traffic (bpikg all replicas in-
side a suitably large domain), but | otherwise consider the network to beledke scope of

this work.

147



| == crush (32k PGs)
~<—* crush (4k PGs)
40 1 -e--- hash (32k PGs)
| -2 hash (4k PGs)
~<—- linear

Per-OSD Throughput
(MB/sec)

T T
2 6 10 14 18 22 26
OSD Cluster Size

Figure 6.11: OSD write performance scales linearly with the size of the OSD cluster until the
switch is saturated at 24 OSDs. CRUSH and hash performance improeesmdre PGs lower
variance in OSD utilization.

6.4.1.1 Data Placement

As seen in Chapter 5, CRUSH produces a distribution of data that closelyh@satc
the mean and variance of a binomial or normal distribution [101], meaningpéaap random,
even though it is a deterministic and constrained mapping. The primary cers=is that
the varianceo? in the number PGs per OSD—and subsequently, in OSD storage utilizations
and workloads—is related to the average number of PGs per @gWvhereo? ~ . With an
average of 100 PGs per OSD, the standard deviatien10%; with 1000 per OSDy drops to
3%. This behavior holds even for large clusters composed of hetexogefi e. non-uniformly
weighted) devices.

Figure 6.11 shows per-OSD write throughput as the cluster scales uRUO&IE, a
simple hash function, and a linear striping strategy to distribute data in 40987&83Gs
among available OSDs. Linear striping balances load perfectly for maximwughput to

provide a benchmark for comparison, but like a simple hash function, it tiaitope with

148



device failures or other OSD cluster changes. Because data placeitieG@RWSH or a hash is
stochastic, throughputs are lower with fewer PGs: greater variancelhufli&zations causes
request queue lengths to drift apart under this entangled client warkloa

Although a probabilistic data distribution means that some devices may become ove
loaded (. e. handle many more thap PGs) with small probability, PGs can be explicitly
diverted away from specific devices using the overload mechanism irSERUnlike the hash
and linear strategies, CRUSH also minimizes data migration under cluster expavisile
maintaining a balanced distribution.

Most importantly, the computational cost of calculating a CRUSH mappi@glagn)
for a cluster of sizen, allowing mappings in the tens of microseconds for even extremely large

clusters.

6.4.1.2 Monitor Interaction

The monitor cluster is designed both for extreme reliability and for high availability

In the general case, monitors do very little work—they process small mesgagesponse to
failures, but are otherwise idle. A worst case load for the monitor clusteure when large
numbers of OSDs appear to fail in a short period. If each OSD stoeGs andf OSDs fail,
then an upper bound on the number of failure reports generated is onddvead 1 f, which
could be very large if a large OSD cluster experiences a network partifiorprevent such

a deluge of messages, OSDs throttle and batch failure reports, imposimgpanhound on
monitor load proportional to the cluster size.

Although failures may be reported to multiple random monitors multiple times, only

149



the first few reports of a given failure will be forwarded to the elected l@anitor. Map up-
dates are quickly propagated among monitors such that subsequets mibe same failures
will be reflected by the current map and result in an immediate response td&SiheRdr this
reason, OSDs send heartbeats to peers at semi-random intervals & digtggtion of failures,
dispersing reports for a given failure over time. Furthermore, map updetierned to a report-
ing OSDs will also reflect all other failures processed to date, preveatimg future failure

reports from being sent.

6.4.1.3 Map Propagation

The RADOS map distribution algorithm (Section 6.2.5) ensures that updaids a
OSDs after only log hops. However, as the size of the storage cluster scales, the frgaqufenc
device failures and related cluster updates increases. Because naagsigre only exchanged
between OSDs who share PGs, the hard upper bound on the numbpies aba single update
an OSD can receive is proportional o

In simulations under near-worst case propagation circumstances witlaregap
updates, | found that update duplicates approach a steady state evesxpotiential cluster
scaling. In this experiment, the monitors share each map update with a sindtena»SD,
who then shares it with its peers. In Figure 6.12 | vary the clusterxsemed the number of
PGs on each OSD (which corresponds to the number of peers it hag)eawire the number
of duplicate map updates received for every new gne Update duplication approaches a
constant level—less than 20% pf—even as the cluster size scales exponentially, implying

a fixed map distribution overhead. | consider a worst-case scenarioigh ke only OSD

150



50

~—
g —8——8&- 30 PGs per OSD
S 40 -®---® 160 PGs per OSD
A —8— -® 320 PGs per OSD
%) ——————— — —
o — —— —e
=]
o
N—r
5
% _____ o R
s T e e
o
=]
© -0— —— —e
o
=
T T ]
64 128 256 512 1024

Cluster size (OSDs)

Figure 6.12: Duplication of map updates received by individual OSDs as the size ofubtec
grows. The number of placement groups on each OSD effects numpeers it has who may
share map updates.

chatter consists of ping messages for failure detection, which means thataliy speaking,
OSDs learn about map updates (and the changes known by their pesfsyvly as possible.
Limiting map distribution overhead thus relies only on throttling the map update dreyu

which the monitor cluster already does as a matter of course.

6.4.2 Failure Recovery

Figure 6.13 shows write throughput over time as a cluster of 20 (real) @&iDgers
from two (simulated) failures at time 30. 30 clients are writing data withr@plication and
saturating the cluster. As the failed OSDs are initially marked down, replicatronghput
drops because affected PGs are temporarily unreplicated, while edfetitent write perfor-
mance correspondingly increases. At time 50 the OSDs are marked otg@nekry is initi-

ated. Performance drops while active and then inactive objects agplieated to other OSDs,

151



o 500 -

Q

©

S 400 - A \

< N\

2 300 -

e

S

S 200 -

< ]

E 100 - - erte .

7 ] replication

8 0 ‘ : | ‘ . . ‘ recoveny,
0 30 60 90 120

time (seconds)

Figure 6.13: Write throughput over time as a saturated 20 OSD cluster recovers fro@3ko
failures at time 30. Data re-replication begins at time 50 and completes at time 80.

250
{——— write
200 7 ------ replication
] recovery
150 +
100 +

LN
U NSNS,

a
o
Ll

Cluster Throughput (MB/sec)

P

‘ ‘ T ‘ ‘ T ‘ T T ‘ ‘ \
30 60 90 120 150
time (seconds)

o

Figure 6.14: Write throughput over time as an unsaturated 20 OSD cluster recoversofie
OSD failure at time 30 and two more at time 80.

152



but throughput eventually returns to a level slightly below baseline (dueetdwib missing
OSDs). The throughput penalty associated with recovery is exagdenatss experiment for
two reasons. First, in such a small cluster, all OSDs either share data wihildtedevices,
or are selected as replacements in one or more PGs. In a large syster@®Sfadailure will
initiate recovery for only a single PG (of a hundred or more) on each okitsg Second, the
relatively naive implementation currently makes almost no attempt to balanceesrgasith
regular workload. Nevertheless, recovery proceeds quickly inlpbaad the cluster resumes
performing at only a slightly degraded level after about 30 seconds.

This is evident in Figure 6.14, which shows first one and then two OSDsdailon
an only partially loaded cluster. The first recovery minimally effects thrpugboth because
more disk bandwidth is available and because fewer PGs contain data tplicatesl. The

second recovery involves more PGs and more data, with a greater impaatformpance.

6.5 Future Work

Although RADOS was developed for use in the Ceph distributed file systé6i,[1
the reliable and scalable object storage service it provides is well-suted\Variety of other
storage abstractions. In particular, the current interface baseddimgeand writing byte ranges
is primarily an artifact of the intended usage for file data storage. Objectd hragh any query
or update interface or resemble any number of fundamental data stsicRoential services
include distributed B-link trees that map ordered keys to data values (asxiwddd [63]),

high-performance distributed hash tables [90], or FIFO queues (aB$180]).

153



Although RADOS manages scalability in terms of total aggregate storage and ca
pacity, this dissertation does not address the issue of many clients agcassigle popular
object. | have implementedraad sheddingnechanism which allows a busy OSD to shed reads
to object replicas for servicing, when the replica’s OSD has a lower Inddwen consistency
allows (. e. there are no conflicting in-progress updates). Heartbeat messadesge infor-
mation about current load in terms of recent average read latencytrau¢DSDs can determine
if a read is likely to be service more quickly by a peer. This facilitates finexgdebalancing in
the presence of transient load imbalance, much like D-SPTF [62]. Notaidyead shedding
is only possible with primary-copy replication, as the OSD servicing reads loeuaware of
any in-progress writes in order to preserve consistency. Althoudimimary experiments are
promising, a comprehensive evaluation has not yet been conducted.

More generally, the distribution of workload in RADOS is currently dependea the
quality of the data distribution generated by object layout into PGs and theimgapipP Gs to
OSDs by CRUSH. Although | have considered the statistical propertieschf & distribution
and demonstrated the effect of load variance on performance foircexekloads, the interac-
tion of workload, PG distribution, and replication can be complex. For exampiie access to
a PG will generally be limited by the slowest device storing replicas, while waddanay be
highly skewed toward possibly disjoint sets of heavily read or written objébisve conducted
only minimal analysis of the effects of such workloads on efficiency in aetusilizing declus-
tered replication, or the potential for techniques like read shedding to imgedformance in
such scenarios.

Although total device failure is addressed, OSDs do not currently cengiartial

154



failures, like corrupted disk blocks. Checksums or preemptive mechalig@rdisk scrubbing
would dramatically improve data safety.

The integration of intelligent disk scheduling, including the prioritization oflirep
cation versus workload and quality of service guarantees, is an ongoéagof investigation

within the research group [109].

6.6 Related Work

Most distributed storage systems utilize centralized metadata servers [A0]1dr,
collaborative allocation tables [86] to manage data distribution, ultimately limitingrsystal-
ability. For example, like RADOS, Ursa Minor [1] provides a distributed obgtarage service
(and, like Ceph, layers a file system service on top of that abstractiochnitrast to RADOS,
however, Ursa Minor relies on an object manager to maintain a directoyj@ftdocations and
storage strategies (replication, erasure coding, etc.), limiting scalabilitylacitig a lookup in
the data path. RADOS does not provide the same versatility as Ursa Migogsric choice of
timing and failure models, or support for online changes to object encdditippugh encod-
ing changes are planned for the future); instead, RADOS focusesatabte performance in a
relatively controlled (non-Byzantine) environment.

The Sorrento [93] file system’s use of collaborative hashing [47]dthe strongest
resemblance to RADOS's application of CRUSH. Many distributed hash tébld3s) use
similar hashing schemes [21, 80, 90], but these systems do not providartteecombination

of strong consistency and performance that RADOS does.

155



For example, DHTSs like PAST [80] rely on an overlay network [81, 9G1]id order
for nodes to communicate or to locate data, limiting I/O performance. More sigmilyc ob-
jects in PAST are immutable, facilitating cryptographic protection and simplifyimgistency
and caching, but limiting the systems usefulness as a general storaige sERS [21] utilizes
the DHash DHT to provide a distributed peer-to-peer file service with cgypphic data pro-
tection and good scalability, but performance is limited by the use of the CBOldbferlay
network. In contrast to these systems, RADOS targets a high-perfoenchrster or data cen-
ter environment; a compact cluster map describes the data distribution, gubidineed for an
overlay network for object location or message routing.

Most existing object-based storage systems rely on controllers or metaded¢ass
to perform recovery [14, 68], or centrally micro-manage re-replicatd®j, [failing to leverage
intelligent storage devices. Other systems have adopted declusteredtieplgtrategies to
distribute failure recovery, including OceanStore [52], Farsite [2f &facier [37]. These
systems focus primarily on data safety and secrecy (using erasureaniethe case of Farsite,
encrypted replicas) and wide-area scalability (like CFS and PAST),diyterformance.

FAB (Federated Array of Bricks) [82] provides high performance tijzing two-
phase writes and voting among bricks to ensure linearizability and to respdadure and
recovery. Although this improves tolerance to intermittent failures, multiple bac& required
to ensure consistent read access, while the lack of complete knowledige d&ta distribu-
tion further requires coordinator bricks to help conduct 1/0. FAB can etilinth replication
and erasure codes for efficient storage utilization, but relies on thefud& RAM for good

performance. In contrast, RADOS'’s cluster maps drive consenslsresure consistent access

156



despite a simple and direct data access protocol. RADOS's cluster masbea resemblance
to layout epochs in Palladio [35]: epoch numbers version views of théecloseembership and
state, per-store layouts resemble RADOS’s PGs and tolerance of clugteliffieeences when
they are not significant, and similar policies guide failure handling and updatelike Palla-
dio, however, RADOS manages cluster maps using a Paxos-like protoooigaa dedicated
cluster of monitors, and distributes updates with a lazy map distribution appifeatal tightly
integrated with the data access protocol. This simplifies consensus managemmé&nalso
avoiding the distributed search and manager selection mechanisms reqguitalibolio to arbi-
trate access to healthy stores and recovery from failure. In contrasthd=AB and Palladio,
RADOS provides high-performance access to data via a comparativeliesiegal and update
protocol, and (of course) exposes an object-based (instead ofbémsed) interface.
Wiesmannet al. [105] compare replication in distributed systems and databases,
including those that rely oatomic broadcasbr view synchronous broadcagtoup communi-
cation primitives to simplify consistency management. RADOS does not utilize atooad-b
cast or similar primitives because comparable ordering guaranteesoaigeat by the use of a
primary copy and ordered message delivery. RADOS’s primary copsoagh is analogous to
eager primary copy database solutions like that in INGRES [91], althougbnitrast to repli-
cated databases, replicated storage systems benefit from deterministiesugad inexpensive
updates, while the processing associated with databases transactigastsiaiternative ap-
proaches. This distinction is illustrated in a performance comparison ofatsalkplication
strategies based on total order broadcast later conducted by Wiegthahn[106]: the per-

formance of active replication schemes (in which each node processapdhate) suffers rel-

157



ative to alternatived. g. certification) schemes in which a single node calculates the result
and broadcasts the results to replicas. Significantly, replication in RAD@gefudiffers from
primary-copy replication as described by Wiesmann in that load remainscealatespite a
fixed (per-PG) primary due to declustering.

Version-driven consistency and logs are used in many primary-cqpigaon sys-
tems. Like RADOS, Harp [61] uses logs to facilitate efficient recoverynftansient failures,
and utilizes a limited form of decoupled replication (administrators must manuatifigradata
into sub-volumes). However, although Harp relies on write-ahead lajgBS to preserve both
performance and consistency, RADOS simply delays update application mratteble replica,
and dissociates synchronization from safety to preserve perform&wreeseet al. describe
a recovery mechanism for chain replication [96] that utilizes a log-like &tracalthough their
use of synchronous updates vastly simplifies possible failure modes,oaschdt address ar-
bitrary changes in the data distribution. Other brick-based storage systbnos a two-phase
commit to maintain update consistency [107] that (like FAB’s voting) incur a itokttency
and complexity. PRACTI replication [9] generalizes a range of consigtenaiels and replica
placement strategies, but like the systems above, does not addressfiiexity of doing so in
a large-scale environment without a centrally managed metadata directory.

Sorrento utilizes version-basednsistencynodel that targets an environment with
minimal write sharing; when update conflicts do arise, conflicting transaciiensolled back
by simply discarding newer versions. This optimistic approach simplifies uptatiee general
case at the expense of strong consistency, resulting in an interfacedhn agplication open-

modify-close sequences may fail to commit and require a retry. In conRadDOS writes

158



are serialized and replicated by a primary OSD, avoiding concurrerdtepbnflicts entirely
simply by altering the flow of data.

Seneca [46] is an asynchronous remote-mirroring protocol that sispwadte coa-
lescing and asynchronous propagation; these features are primafily when a slow, wide-
area network link separates replicas and when replica consistency i®dltovdiverge based
on some bounded time interval. In contrast, RADOS is designed for a clustzomment
with high speed links, and keeps all replicas consistent by applying updgtehronously.
(Although write coalescing could be used to improve recovery perforeJaRADOS does
not yet implement this optimization.) 8t al. also present a taxonomy for remote mirroring
which can be applied to a range of replication strategies; RADOS can behlisbsas in-order
asynchronous propagation, with no inter-LU (placement group) imgleno divergence, and
full write-through (although Ji's taxonomy does not capture RADOS’ phase acknowledge-
ment).

Previous systems have provided an abstract distributed object stoeeof@hre ear-
liest is Thor [60], which focused on extending the object (as in objéented programming)
paradigm in a distributed environment with the notion of persistent objectddyBlache [10]
provides strong consistency semantics and caching for distributed ampig;abut it targets
small cooperating peer groups and wide area networks. Other systexsaoasistency con-
straints [30] and target widely distributed and weakly connected envimotznjé8, 53]. In
contrast, RADOS targets a large, dedicated storage cluster.

Kybos [107] provides a distributed storage service using bricks atvadonie RAID,

with an emphasis on resource (storage and bandwidth) reservatiombmel adjustment of

159



placement to meet those requirements. In contrast, RADOS employs a gseddon distri-
bution (corrected to limit variance and avoid overload) to avoid the metadstaiated with
defining explicit mappings between individual objects and devices, facititatalability and
avoiding directory lookup. Kenchammana-Hoseketal. evaluate a range of approaches to
data path, consistency, and atomicity in a simulated network RAID system [i#ough
parity-based redundancy differs from simple replication, their analygpiarigally applicable to
RADOS. Notably, they observe that shifting serialization to an OSD avoitfgonke saturation
when client bandwidth is limited, and that the choice of data path is orthogonalltéobject
atomicity. In particular, a two-phase commit strategy for atomic multi-object updaténich
is planned but not yet supported by RADOS—has little performance penaitypst circum-
stances.

Xin etal. [112] propose the use of distributed recovery as a means of improviag da
safety, and conduct a quantitative analysis of system reliability with FaRMchstered repli-
cation model in which—like RADOS—data objects are pseudo-randomly distditareng
placement groups and then replicated by multiple OSDs, facilitating fast paeaiteery. They
find that distributed recovery improves reliability at scale, particularly in tiesgnce of rela-
tively high failure rates for new disks (“infant mortality”). Liat al. [59] find that reliability
further depends on the number of placement groups per device, dtictlogtimal choice is re-
lated to the amount of bandwidth available for data recovery versus demcividth. Although
both consider only independent failures, RADOS leverages CRUSH to iritigarelated fail-

ure risk with failure domains.

160



6.7 Conclusions

RADOS provides a scalable and reliable object storage service withayromising
performance. By separating serialization from safety, the architectawédes strong consis-
tency semantics to applications by minimally involving clients in failure recovery.

RADOS utilizes a globally replicated cluster map that provides all parties with com-
plete knowledge of the data distribution, typically specified using a functiordRE&SH. This
avoids the need for object lookup present in conventional archite;tat@ich RADOS lever-
ages to distribute replication, consistency management, and failure ne@meng a dynamic
cluster of OSDs while still preserving consistent read and update semahtcalable failure
detection and cluster map distribution strategy enables the creation of extiangel\storage
clusters, with minimal oversight by the tightly-coupled and highly reliable monltester that
manages the master copy of the map.

Because clusters at the petabyte scale are necessarily heterogandalgamic,
OSDs employ a robust recovery algorithm that copes with any combinatidevide failures,
recoveries, or data reorganizations. Recovery from transient@aiiadast and efficient, and

parallel re-replication of data in response to node failures limits the risktafldss.

161



Chapter 7

Local Object Storage

Low-level object storage on individual OSDs is managed by EBOFSxtenEand B-
tree based Object File System. Although a variety of distributed storagiteatcines leverage
existing general-purpose file systems [14, 55] such as ext3 [95], betpgtHformance and
the standard POSIX file system interface and safety semantics are ipapfgdor RADOS.
Because EBOFS is implemented entirely in user-space and interacts directly saithblock
device, it is unencumbered by an unwieldy kernel file system interfaxcka@oids interaction
with the (Linux) VFS inode and page caches, which were designed émdifferent storage
abstraction and workload assumptions. This allows EBOFS to optimize spkgifareobject

workloads [97].

7.1 Object Storage Interface

EBOFS exposes a unique low-level storage interface that forms thedb&ADOS’s

strong consistency and safety model. Objects are accessed via a simlike fileerface that

162



provide simple read and write access to byte extefa$ fsetlength pairs). Objects can be
members of zero or more namedllections which are indexed to allow efficient enumeration
or changes in membership (used by RADOS to manage placement groupl)olBects and
collections accept nametributes which map an identifier to an variable length (but normally
small) piece of data.

In contrast to conventional file systems, EBOFS exposes an interfaceughaorts
compound transactions that allow a sequence of operations to be griotpedsingle atomic
operationt A single transaction may, for instance, write data to multiple objects, adjust collec
tion membership, update object and collection attributes, and be certaintdraa #ilure the
operation will be either fully completed or never started. Similarly, transactiangead both
object data and attribute values atomically without fear of race conditions altbws RADOS
to apply an object update, modify the object version, update thiagt@pdate and append an
entry to the PG log in a single atomic transaction, keeping PG metadata perfecitycyized
with data.

EBOFS writes are usually non-blocking, applying changes to the in-menaatyec
and returning immediately. Because critical metadata is kept in memory, opetatticksonly
when the buffer cache is full and data is being flushed out to disk, alloRAIQOS to quickly
apply updates to establish ordering semantics without waiting for disk I/O.FEB@ovides

asynchronous notification via a callback when changes are safely comtoittble storage.

1Although many kernel-based file systems support compound transactiqgroup commit internally for effi-
ciency, they do not expose a transaction interface to applications.

163



7.2 Data Layout

Like most modern file systems [40, 92], EBOFS usgtentsto keep metadata effi-
cient. In most cases, writes are laid out on disk in large, contiguous agdlairextents. Free
extents are binned by size and sorted, allowing the allocator to utilize a “tlpsed fit” strat-
egy in which a free extent of approximately the size required is allocatedelated data or the
current write position on disk. This facilitates efficient streaming writes ahdé¢ read access
while minimizing long-term fragmentation.

A generalized B-tree [19] library is used to manage most storage metactiial, gy
the free extent lists and the object and collection tables which map object identdbnode
andcnodelocations on disk. Eacbnodecontains the metadata for an individual object, includ-
ing attributes, collection membership, and the list of extents containing object@altaction
cnodesstore collection attributes. A single large B-tree is currently used to map atimti¢éD

to the objects it contains.

7.3 Data Safety

EBOFS maintains two superblocks, updated in an alternating fashion, remeée
current file system metadata. All other data and metadata is always writteltoaated re-
gions on disk, similar to soft updates [64] and copy-on-write B-tree tg3sda WAFL [40]. At
the end of eachommit cycleall pending changes are flushed to disk before the next superblock
is written with references to the new metadata. Pending changes are tsachethat subse-

qguent writes do not block while waiting for prior epochs to commit. On mount, EB&mply

164



chooses the newer superblock, secure in the knowledge that itmeésre fully consistent
snapshot of the most recently committed file system state.

In contrast to conventional file systems, which typically keep newly writtda oha
cache before flushing it to disk (in the hopes that it will be modified agairetated), Ceph
clients perform this function before submitting I/Os to the object store. Fordhson, EBOFS
aggressively schedules disk writes, and cancels pending disk I/O suiEequent write or
delete operations render them obsolete. This approach maximizes the leagth/® queues

for greater scheduling efficiency, and ensures that data reachessdisiickly as possible.

7.4 Journaling

EBOFS can optionally employ an auxiliary journal to reduce the commit latency of
object updates. Although the separation of serialization and safety in tregstmterface
largely masks the commit latency associated with the periodic cycle, certainampig€. g.
metadata journaling) rely on both the safety and low latency of writes.

The EBOFS journal is stored on an independent storage device—idwadypacked
by NVRAM—than the rest of the file system. The device is structured as &gimg buffer:
once the write pointer reaches the end of the device, it starts over aghm laginning. The
journal “tail” pointer is adjusted to reclaim journal storage after each comyniecompletes
and older journal entries are no longer needed. If the journal dellgegiprematurely, journal-
ing is temporarily disabled for the duration of the commit cycle until it can bdysedstarted.

Each update transaction processed by EBOFS is applied first to the in-yneacbie,

165



60

X Writes
50

40

30 RO
——— reiserfs

201,/ ereads_ A~ = —-—-- xfs

--®-_. o -@--@--9g_--@---0
24 ol ot Sh= S

10

Per—-OSD Throughput (MB/sec)

0 - T T T T T T
4 16 64 256 1024

/O Size (KB)

T T 1

T
4096 16384

Figure 7.1: Performance of EBOFS compared to general-purpose file systems. éitlsouall

writes suffer from coarse locking in the prototype, EBOFS nearly s&sithe disk for writes
larger than 32 KB. Since EBOFS lays out data in large extents when it is wirittarge incre-
ments, it has significantly better read performance.

then queued for write in the journal. The final commit callback occurs whefotirnal event
flushes to the journal backing device, or when the next commit cycle coraplethichever
comes sooner. For small writes in particular, this offers a significant inepnewt in perfor-
mance. For large writes that are I/O bound at the disk, the duplication ofrdad¢h the journal

and the primary storage device limits the journal’s effectiveness.

7.5 Evaluation

Figure 7.1 compares the performance of EBOFS to that of generalgrifi® sys-
tems (ext3, ReiserFS, XFS) in handling a Ceph workload. Clients synohsbnwrite out
large files, striped over 16 MB objects, and read them back again. Althsomgll read and

write performance in EBOFS suffers from coarse threading and locEB@®FS very nearly

166



saturates the available disk bandwidth for writes sizes larger than 32 KiBigmificantly out-
performs the others for read workloads because data is laid out in ertedlisk that match
the write sizes—even when they are very large. Performance was radasing a fresh file
system. Experience with an early EBOFS design suggests it will expesedéicantly lower
fragmentation than ext3, but | have not yet evaluated the current impletioaa an aged file

system.

7.6 Related Work

The design of EBOFS is based largely on the design of existing file systerost M
notably, these include XFS [92] and WAFL [40]. EBOFS, like XFS, utilizents and B-trees
to manage allocation and metadata. EBOFS commit strategy is similar to that foundHb. WA
Likewise, EBOFS's journal is very similar to that used by WAFL in filers coritey NVRAM.
Notably, the loss of the journag(g.failure of an NVRAM battery) compromises the durability
of writes during the last commit cycle, but does not affect the consisteftye rest of the file
system.

Like FFS and most file systems that followed, EBOFS attempts to keep related data
and metadata together. However, instead of employing explicit cylinder gr&RBOFS sorts
the free extent maps by position to locate available storage space that iela¢ed data or
metadata.

Although the first incarnation of EBOFS was implemented within the Linux kernel,

the implementation was moved to user-space largely based on experience B# [97],

167



another object-based file system that demonstrated excellent perfematsae the kernel by

bypassing the kernel page cache with theQIBIRECT interface.

7.7 Conclusion

EBOFS provides a reliable, high-performance storage service fdrdbject storage
on Ceph OSDs. Itis based on a copy-on-write strategy that avoidaotieg any data on disk
until it has been deallocated, facilitating fast crash recovery by engtivat the on-disk image
is consistent at all times. Its storage interface tailored specifically to thes mé&ADOS, no-
tably including asynchronous notification of update commits to disk and sujgp@ompound
transactions. This facilitates atomic compound updates to both data and metatisdanaul-
tiple objects, which are used by RADOS to keep PG metadata (such as the Ri&stogsed
in Section 6.3.4) consistent with object data. EBOFS includes supportjéarriaal stored on
an auxiliary storage device to faciliate fast update commits. It is implemented emtinebgr

space.

168



Chapter 8

Conclusion

I conclude this dissertation by first considering additional avenuessefireh, and

then summarizing the work presented here.

8.1 Future Work

Although the design and implementation described in this work is relatively complete
the file system is functional and the implementation can properly tolerate mostraiobs of

failures—there are a number of planned augmentations and opportunitfesui@ research.

8.1.1 MDS Load Balancing

One of the largest lessons in Ceph was the importance of the MDS load &atanc
overall scalability, and the complexity of choosing what metadata to migratesveimer when.
Although in principle the design and goals seem quite simple, the reality of distgban

evolving workload over a hundred MDSs highlights additional subtletiesstMotably, MDS

169



performance has a wide range of performance bounds, including @Btdory (and cache ef-
ficiency), and network or I/O limitations, any of which may limit performancerst point in
time. Furthermore, it is difficult to quantitatively capture the balance betwdahttoough-
put and fairness; under certain circumstances unbalanced metadadtatiists can increase

overall throughput [102].

8.1.2 Client Interaction

The basic protocol used by the client to communicate with the MDS cluster takes a
few basic steps to minimize interaction. For examplesaddir operation returns both dentry
names and inode contents, facilitatingeaddirplusinterface or optionally relaxing strict client
consistency to improve application performance. However, the operdatithre DS is still
fundamentally synchronous: clients are not issued any leases to keemé#tadata caches
consistent. Experience with other file systems has shown that such teefrign be quite
effective; in most workloads there are typically a small number of directdhiat are read-only
and heavily shared( g. /usr).

A mechanism currently exists to delegate and call back client capabilitiesilitatac
exclusive, read-only, or read-write sharing of file data,; it is likely tkeasing this mechanism on
a coarse per-directory basis could capture a relatively substantiaiempemt in metadata per-
formance. A more generalized metadata leasing mechanism would likely proeesffective,
although it would be more complicated to implement.

Systems like Envoy [79] seek to migrate metadata management to the same bardwar

node as the client application. Although this is technically feasible given tipd GHS ar-

170



chitecture, the security and failure recovery implications of doing so havéeen carefully

considered.

8.1.3 Security

The currentimplementation does not include any kind of distributed secusiigudrity
enforcement resembles that of NFS, in which servers tidsindgid values embedded in each
client request. Although the architecture is based on a capability modelilitafaca strong
security infrastructure, OSDs do not yet validate capabilities. Two gganchitecture and
protocol variants have been proposed for Ceph [57, 69], andasmkden partially implemented

(for a single-MDS system).

8.1.4 Quotas

Pollacket al. [50] describe a scalable distributed quota enforcement architecture that
is designed to work with distributed storage systems. Their architecture esl lo&scrypto-
graphically signedrouchers generated by a quota server, that clients can redeem with OSDs
in order to store data. Used vouchers are tracked and later recondildel the system further
places bounds on clients’ ability to “cheat” through voucher re-usek\Wgaurrently underway

to implement this scheme in Ceph.

8.1.5 Quality of Service

Wu et al. [110] describe a quality of service framework designed to isolate the

performance of different classes of workloads concurrently atogshe system. EBOFS is

171



augmented with QoS-aware disk scheduling, while the statistically uniform distnibof load
provided by CRUSH is leveraged to approximate global class-based isol&esearch is on-
going in this area to further provide end-to-end performance manageviibrstronger bounds

on performance [24].

8.1.6 Snapshots

One of my ulterior motives for introducing the anchor table mechanism wasoto pr
vide a generic means of making inodes globally addressable. Although thisegassary for
support of multilink files, I also plan to use it to facilitate a flexible form of “sslapis” that can
be applied at any time to arbitrary subtrees of the file system hierarchyoblyis to introduce
time extents to dentry identifiers in order to easily integrate management of neceespap-
shots into the existing MDS, while simultaneously introducing an object-gratyarsioning

abstraction to the distributed object store.

8.2 Summary

As the scalability and performance requirements for storage systemssacsgatem
designers must look to new architectures to meet those demands, in masyabasdoning
conventional approaches. | have described Ceph, a distributedditssyhat provides excellent
performance, reliability, and scalability. Ceph’s design eschews a nushbenventions in file
system design dating back to early Unix in order to push the bounds of retiabiscalable

performance.

172



Metadata in Ceph is managed by a distributed, adaptive, fault-tolerantrafisteta-
data servers (MDSs) that collectively forms a high-performance densisache of the file sys-
tem namespace (Chapter 4). Metadata is stored with file metadata (inodes)deahtieside
their containing directories, and each MDS maintains an extremely large jodramatically
improving the /O profile generated by a busy MDS server, while suppoR®SIX hard links
is preserved through an auxiliary table. Workload is partitioned in terms ofilthgystem
namespace—made possible in part by the embedded inode strategy—allowviclgdter to
adapt to changing file system workloads to effectively utilize availablauress.

Scalability and self-management in RADOS is made possibly in part through the
use of CRUSH, and specialized data distribution function that logically takée glace of a
conventional allocation table. CRUSH (described in Chapter 5) allows tladidocof a data
object to be cheaply calculated when it is needed, eliminating the need to Bjec¢locations
in atable or query a directory service. CRUSH provides functionality similamhtash function,
while taking additional steps to ensure that object locations are stable wkieesl fail or join
the cluster. Most importantly, the algorithm addresses reliability in the presgfaorrelated
failures through the use of a flexible, hierarchical placement strategy.

RADOS (Chapter 6) enables the management of a large, dynamic cluster-of s
age devices by distributing data replication, failure detection, and failuoyeey to intelligent,
semi-autonomous devices. A cluster map ensures a consistent view of statgeand data lay-
out, facilitating consistent read and update semantics despite a lazy upnlzdgation scheme.
This allows replication, failure detection, and recovery to be managed icenttalized and

scalable fashion, with minimal oversight from the tightly-coupled cluster ofitamresponsi-

173



ble for the master copy of the cluster map. The update protocol sepayatds@nization from
safety in order to improve performance while preserving strong consistemd data safety
semantics, enabling excellent performance, data safety, and scalabilitgyinamic cluster
environment.

In addition to describing key enabling components of Ceph’s design gl éaaluated
a working prototype of the system under a range of benchmarks ahd/wdd workloads,

demonstrating excellent performance, reliability, and system scalability.

174



Appendix A

Communications Layer

A.1 Abstract Interface

Message passing in Ceph is based on a simple abstract messaging intexfaize
fines node addressing and naming, methods for sending and receivssgges, and a notifica-
tion mechanism for handling delivery failures.

Each node in Ceph has both a logical name and a network address t&sbadih it.

The logical named. g. mds0, osd1) will typically remain the same across restarts, as it refers
to the node’s role in the system, while the address is (by design) uniquednyr i@carnation

of a daemon or process participating in the system. The address condists I6f address
and port used for sending messages to the given node, as well ascallyyrandom) nonce
value to keeps the address unique, even across starts. This allowsadiesrin the system to
easily determine whether a peer has restarted (and potentially lost stetedcoy comparing

addresses.

1In certain cases, the nonce values are not used. The monitorssadudrece values are fixed at 0 since commu-

175



A.2 SimpleMessenger

SimpleMessenger is an implementation of the abstract communications interfiace tha
utilized TCP for message transport. The use of TCP naturally provideblegl@dered deliv-
ery as well as natification of communication faults (in the form of connectiopg)t When a
message is queued for a new peer, a TCP session is established, aadrth@entify them-
selves to ensure that their nonce values match and the address is noOstedeestablished,
messages can be passed across the same TCP session in both direntamgerlfk connection
teardown process is used to shut down the session to ensure that rrgesese lost.

The implementation currently makes no attempt to retry in the event of a commu-
nications error, which makes it relatively vulnerable to certain types ofrimitemt network
problems. For example, packet loss is tolerated relatively well (eventualising a timeout),
while routing changes can cause an immediate TCP session drop. Althopligit emessage
receipt acknowledgement and buffering of outgoing messages would takoimplementation
to transparently attempt reconnect and redelivery without violating therioglrequirements,

this has not yet been implemented.

A.3 FakeMessenger

FakeMessenger is an alternate implementation of the messaging interfaceitieat is
for debugging purposes. Messages are exchanged between @gitiak existing within a sin-

gle process’s address space. Because no inter-process communigatioanism is provided,

nication with the monitors is stateless.

176



multiple logical system components (OSDs, metadata servers, clients, moar®)mpiled
and executed within the same process. Sent messages are simply addetetoans queues,
and later delivered in a round-robin fashion that ensures that onlygéesimessage is begin

processed at a time (for ease in debugging).

177



Appendix B

MDS Implementation Details

This appendix describes certain elements of the MDS implementation in greater de
tail. In particular, | describe the structure of the distributed cache and theanisms through

which replication consistency is preserved in the face of failure.

B.1 MDS Distributed Cache

Central to the dynamic subtree partitioning approach is the treatment of thestibers
as a hierarchy. The file system is partitioned by delegating authority ftnesdof the hierarchy
to different metadata servers. Delegations may be nested: /usr may heedssigone MDS,
for instance, while /usr/local is reassigned to another. In the abserme ekplicit subtree
assignment, however, the entire directory tree nested beneath a posuriseakto reside on the
same server.

Implicit in this structure is the process of hierarchy traversal in ordenésted in-

odes to be located and opened for subsequent descent into the fitethye@uch path traversal

178



is also necessary to verify user access permissions for nested itenqumeddy POSIX se-
mantics. Although this process may seem costly for locating a file deep withinrdetaly
hierarchy, the locality of reference typical of both scientific and gdnmrgpose computing
workloads [28, 98] allows those costs to be amortized over subseqoertses to the same
directories. More importantly, unlike LH permission management [15], atulkically defined
structure allows the system to move or change the effective permissionbiaidly sized
subtrees of the directory tree by modifying the relevant ancestor diyawttr fixed cost. Like-
wise, individual subtrees of the hierarchy are fully independent fifugir siblings; semantics

are dependent only on the prefix (ancestor) directories leading toahefrthe file system.

B.1.1 Cache Structure

All metadata that exists in the cache is attached directly or indirectly to the root in-
odé'. That is, if the /usr/bin/vi inode is in the cache, then /usr/bin, /usr, andtbayéncluding
the inodes, directory objects, and dentries. Only leaf items may be expmedtfre cache;
directories may not be removed until items contained within them are expiréd Tings al-
lows permission verification for all known items to proceed without any additio® costs,
and for hierarchical consistency to be preserved. It also facilitatesntiteedding of inodes in

directories.

IMetadata may also be rooted bgtayinode; see section B.1.1.3.

179



B.1.1.1 Directory Fragments

Directory contents are managed in terms of one or more directory fragndints (
frag9) that are associated with each directory inode. In most cases, therenigeafsagment
that contains the full directory contents. In certain cases, howevectdiy contents are broken
up to ease load balancing. Each directory fragment is stored in a diffe@tct in the object
store, allowing them to be managed completely independently of each other.

Fragments are described by a binary split tredérdg treg stored in the directory
inode. Each directory fragment corresponds tivag, which is defined by a bit pattern and
mask. Much like network names and masks in IP networking, the mask spediels bits
are significant and compared to the bit pattern. For example, frag 12/4 itadsk and a
matching bit pattern of 12 (1100 in binary). Directory entries are mappedtiagments by
hashing the filename to an integer value and then matching that against alefregin the
fragtree?

Because the cache structure is defined such that a directory inod@yhasiraber
of children (depending on its fragmentation level), the subtree partitioninganeshs can be
leveraged to individually delegate directory fragments to other nodes idustec This allows
all of the existing infrastructure for migration and failure recovery to based, while providing

a simple internal abstraction for breaking large or busy directory into snmdees.

2The implementation is considerably more efficient than this sounds; m@pgiash value to a fragment in a
fragtree isO(logn), wheren is the number of fragments.

180



B.1.1.2 Dentries and Inodes

Each directory fragment is a collection directory entries, or dentriesalgecCeph
embeds inodes into the directories that reference them, this gives rise top@sdidentries.
The first (or only) dentry to reference an inode is calleddfimary, and is always accompanied
by the inode itself. Remotedentries reference an inode by number only; an additional lookup
in the anchor table may be required to locate the inode itseffulAdentry is also possible (at
least in-memory) to capture caching or locking state for a name that is dbggetiareference
an inode but it still of interestg( g.for replicating knowledge of a name’s non-existence), or to

capture thalirty state for a deleted file.

B.1.1.3 The “Stray” Directory

Because the cache is structured such that all inodes are associatedpuiitiiagy
dentry, management of files that are open for I/0O but have been unlfr@dhe namespace
present a problem. Maintaining the primary dentry/inode relationship is Oésibecause of
the subtree-based approach for partitioning workload and the existinglat@tstorage infras-
tructure.

To maintain that arrangement, unlinked files are moved into a hisldi@ydirectory if
it is not possible for them to be immediately removed. Each MDS maintains a se=ptey di-
rectory inode (with potentially many directory fragments), allowing operatibasunlink files
from the namespace to proceed locally on each MDS. Stray directorysri@e predictable
numbers (based on the MDS node), allowing discovery and replicatiotrayf sietadata on
other MDS nodes, and allowing unlinked inodes to be referenced by theatable.

181



B.1.2 Replication and Authority

The authority maintains a list of what nodes cache each inode. Additionatif e
replica is assigned a nonce (initial 0) to disambiguate multiple replicas of the samésite

below).

map<int, int> replicas; // maps replicating mds# to nonce

The replicas setlwaysincludes all nodes that cache the particularly object, but may
additionally include nodes that used to cache it but recently trimmed it from ¢helre. In

those cases, an expire message should be in transit. We have two invariants

1. The authority’s replica set will always include all actual replicas, and

2. cache expiration notices will be reliably delivered to the authority.

The second invariant is particularly important because the preseneplafas will
pin the metadata object in memory on the authority, preventing it from being trimroed f
the cache. Notification of expiration of the replicas is required to allow pusiyoreplicated
objects to eventually be trimmed from the cache as well.

Each metadata object has a authority bit that indicates whether it is autheribativ
a replica. Although this information is also discernible from the subtree partitienbits are
faster to check and provide an additional sanity check for debugging.

Each replicated object maintains a "nonce” value, issued by the authotitg ine
the replica was created. If the authority has already created a repliteefgiven MDS, the new

replica will be issues a new (incremented) nonce. This nonce is attachadhe expirations,

182



and allows the authority to disambiguate expirations when multiple replicas of e @laject
are created and cache expiration is coincident with replication. (In cexdaies, the authority
may push a new replica to another MDS to ensure that a replica exists theosrfe operation.)
That is, when an old replica is expired from the replicating MDS at the same tima thew
replica is issued by the authority and the resulting messages cross pathsthhity can tell
that it was the old replica that was expired and effectively ignore the atiqnir message. A

replica is removed from the authority’s replicas map only if the nonce matches.

B.1.3 Subtree Partition

Authority of the file system namespace is partitioned using a subtree-baggibp-
ing strategy. This strategy effectively separates directory inodesdimatory contents, such
that the directory contents are the unit of re-delegation. That is, if / igrees$ to mds0 and
/usr to mds1, the inode for /usr will be managed by mdsO (it is part of the /tdig§cwhile the
contents of /usr (and everything nested beneath it) will be managed by mds1.

The description for this partition exists solely in the collective memory of the MDS
cluster and in the individual MDS journals. It is not described in the reéguiadisk metadata
structures. This is related to the fact that authority delegation is a propletiye directory
fragmentand not the directory’'mode

Subsequently, if an MDS is authoritative for a directory inode and doegatdave
any state associated with the directory in its cache, then it can assume thisatasignoritative
for the directory.

Directory state consists of a data object CDir that describes any caehétied con-

183



tained in the directory, information about the relationship between the caohéehts and what
appears on disk, and any delegation of authority. Each CDir objectdiasath element. Nor-
mally dir_auth has a value of AUTHPARENT, meaning that the authority for the directory is
the same as the directory’s inode. Whenalith specifies another metadata server, that direc-
tory is point of authority delegation and becomesuatree root A CDir is a subtree root IFF

its dir_auth specifies an MDS id (and is not AUTIPARENT). That is,

1. Adiris a subtree root IFF diauth '= AUTH.PARENT.

2. If dir_auth = AUTH.PARENT then the inode auth == dir auth, but the converse may not

be true.

The authority for any metadata object in the cache can be determined byifwlow
the parent pointers toward the root until a subtree root CDir object cheeh at which point
the authority is specified by its dauth.

Each MDS cache maintains a subtree data structure that describes tke palotition
for all objects currently in the cache:

map< CDir*, set<CDir*> > subtrees;

A dirfrag (represented by a CDir) will appear in the subtree map (as)dkEyit is a
subtree root. The map value is a set of all other subtree roots nested imryeoateath that
point. Nested subtree roots effectively bound or prune a subtreeexaonple, if we had the
following partition:
MDS | Path
mdsO | /
mds1| /usr

mdsO0 | /usr/local
mdsO | /home

184



The subtree map on mds0 would be

Subtree | Bounds
/ (/usr, /home)
{usr/local| ()
/home 0
and on mds1:

Subtree | Bounds
lusr (/usr/local)

B.2 Metadata Storage

Ceph metadata is stored in regular objects in the shared object store. Tihais a
tageous primarily because it keeps all metadata in a shared medium, facilitatirediomgyf
metadata authority between nodes and recovery in the event of failutadMa resides both in

the per-MDS journals and primary per-directory fragment objects (bapt€r 4).

B.2.1 Directory Fragments and Versioning

Metadata updates that exist in the MDS journal but not in the regular metjatis
are calleddirty and pinned in the MDS cache. In order to keep track of which updates hav
been committed, each inode, dentry, and dir object in the MDS cache maintairsian value.
Versions are generated relative to the directory fragment that contang #ince that is the
underlying unit for metadata storage: when a cache item is dirtied, its nesiomeralue is
generated by incrementing the directory fragment version.

Each directory fragment maintains four version valuesrsion the current version;
projectedversion the anticipated version pending updates that are still being journaled; and

committingversionand committedversion the last versions to be queued for or commit to

185



disk. The projected version values are assigned to updates that ametisuneing written to the
journal, but have not yet been applied to the in-memory metadata cacheliasd side-effects
are thus not yet visible). Thuspmmitted<= committing<= version<= pro jected

The committed version normally indicates the version of the directory that is written
to stable storage on disk. Any directory entry or inode contained in thetdiyewith a version
value greater than this should be flagged as dirty in the cache. After ja@play due to
an MDS recovery from a failure, however, the MDS does not know dmenitted version of
directory fragments it extracted from the journal (it would be expentiverobe all of these
objects just to find out). In this case, the committed version is zero, and mehg itams may
be marked as dirty (due to journaled updates) even though they wele stafed by the prior
incarnation of the MDS. When such a directoryatchedrom disk, it will compare dirty dentry
versions with the actual committed version and mark any unnecessarily dirtydtears

When a directory item is removed, it is replaced by a (dirty and versiandtlentry.
This ensures that the deletion is reflected in the cache until the directorynimitied. Clean
null dentries can be safety trimmed.

Each directory fragment hascampleteflag that indicates whether all directory con-
tents are currently cached. If any non-null item is expired from theesatie flag is cleared.
Currently, directory fragments can only be committed to disk in their entirety iwhigans that
a fetch must sometimes be conducted (to fill in any missing contents) beforaraitf. e. a
read-modify-write). Partial commits will be made possible in the future by ektgriie object
interface to provide a key/value interface in addition to the simple byte extlntikiz) model.

A higher-resolution complete flag(g.one with a separate bit for different subsets of the den-

186



try namespace, or a Bloom filter [11]) would allow create operations tdysafeceed without

caching the complete directory fragment contents.

B.2.2 Journal Entries

Journal entries reflect metadata updates that have not yetbesnittedo the per-
directory metadata storage. Entries employ a commetablobstructure for describing meta-
data updates. Each metablob consists of one or more directory fragmentébtries, and
inodes. Normally, each updated item in the metablob is accompanied by arsyametadata
necessary to connect it to the root of the current subtree. Jouimatitng is constrained such
that at all times any non-obsolete journal entry is preceded by a SutapeeMry that includes
all subtree roots and bounds, with ancestor metadata up to the filesystenTlhogt. as long
as replay begins with a SubtreeMap, all included metadata can be plaqetipnithin the
hierarchy.

Metadata objects in the metablob also include a few flags: namely, all items may be
marked dirty, and directory fragments may be markemplete Thedirty flag simply sets the
object’s dirty flag when the entry is replayed after a failure, inducing antexal commit of the
containing directory fragment. The complete flag likewise sets the fragmemtiplete flag; it
is used only when migrating subtrees between MDS nodes when the fragraetite contents
are included in the metablob.

A few other metadata updates can be described by the metablob, allowing them to
committed atomically with other updates. These include anchor table transasgéensglow),

inode number allocations, inode truncations, and client request idenifieish are journaled

187



to keep all operations idempotent from the perspective of the client).

B.2.3 Anchor Table

The anchor table is an auxiliary structure, managed by a single MDS, thatkatie
odes to be located within the directory hierarchy by their inode number. ¢éidegsary because
Ceph lacks a conventional inode table that facilitates inode lookup by inocher. Inode
contents are always embedded in directories adjacent to a directontteattreferences them.
Because they can exist only in one place, that dentry is deemguithary dentry Any addi-
tional remote dentriesefer simply to the inode number.

Because there are no back pointers from the inode to reference reemities, and
because directory renames can affect arbitrarily large portions oféharthy, it is necessarily
to be able to locate the actual inode contents within the hierarchy with only aa madber.
This is accomplished bgnchoringonly those inodes who have multiple hard links or directories
inodes with children having multiple hard links. The anchor table maintains bzinkeps with
reference counts for all anchored inodes to the directory fragmerntdhgains them.

For example, if/usr/bin/nano and/usr/1ib/1d.so have additional hard links,
the table might look like Figure B.1.

This simple structure for the anchor table keeps the overall size of the taleely
small (particularly when considering that in most cases, very few inodes multiple hard
links). It also is easy to update when directory renames effect larg@psiof the hierarchy:
only the backpointer for the renamed item, the reference count for its immexdithsand new

parents, and any missing ancestors need to be updated in the table.

188



Path Inode | Parent | Ref
{usr/bin/nano| 123 12#0| 1
fusr/bin 12 10#0 | 1
{usr/lib/ld.so 456 11#0| 1
{usr/lib 11 1040 | 1
lusr 10 1#0 | 2
/ 1 1

Table B.1: Sample anchor table with two anchored inodes. Note that the full path is shown
only for illustration and is not part of the table. The hash mark (#) in thenpaa@umn is used

to denote a particular fragment of the given directory, where 0 indicateditectory is not
fragmented. The /usr entry has a ref count of two because it is refmtdoy both /usr/bin and
lust/lib.

Anchor table queries return all records necessary to reach theaothtef given in-
ode. Updates are conducted with a two-phase commit. The anchor table MDBdrnals a
prepareevent. The resulting transaction ID is included in the journaled metablob fatdneic
operation effecting the update, angé@mmitevent is later journaled by the anchor table MDS

to close the transaction.

B.3 Migration

B.3.1 Cache Infrastructure
B.3.1.1 Ambiguous Authority

While metadata for a subtree is being migrated between two MDS nodes, tathlir
for the subtree root is allowed to be ambiguous. That is, it will specify bathotth and new
MDS IDs to indicate that a migration is in progress.

If a replicated metadata object is expired from the cache from a subtiesevaluthor-

189



ity is ambiguous, the cache expiration is sent to both potential authorities. fi$uses that the
message will be reliably delivered, even if either of those nodes fails.mbeu of alternative
strategies were considered. Sending the expiration to the old or new igutnaat having it
forwarded if needed can result in message loss if the forwarding mildePinning ambiguous
metadata in cache is computationally expensive for implementation reasordelagihg the
transmission of expiration messages is difficult to implement because the tiaplighdS must
send the final expiration messages only when the subtree authority is disateoigforcing it
to keep certain elements of it cached in memory. Although duplicating expiratiocnss a

small communications overhead, the implementation is much simpler and easieryo verif

B.3.1.2 Auth Pins

Most operations that modify metadata must allow some amount of time to pass in
order for the operation to be journaled or for communication to take placesbatthe object’s
authority and any replicas. For this reason it must not only be pinned intherity’s metadata
cache, but also be locked such that the object’s authority is not alloweldattge until the
operation completes. This is accomplished usiath pins which increment a reference counter
on the object in question, as well as all parent metadata objects up to thaf thetsubtree. As
long as the pin is in place, it is impossible for that subtree (or any fragmenttadt contains
one or more auth pins) to be migrated to a different MDS node. Auth pins €gualsed on
inodes, dentries, and directories.

Auth pins can only exist for authoritative metadata, because they are i@aied if

the object is authoritative, and their presence prevents the migration afriyith

190



B.3.1.3 Freezing

More specifically, auth pins prevent a subtree from bdiogen When a subtree is
frozen, all updates to metadata are forbidden. This includes updates reptieas map that
describes which replicas (and nonces) exist for each object.

In order for metadata to be migrated between MDS nodes, it must firstenfrd he
root of the subtree is initially marked &gezing This prevents the creation of any new auth
pins within the subtree. After all existing auth pins are removed, the subttieerisnarked as
frozen at which point all updates are forbidden. This allows metadata state tochaged up
in a message and transmitted to the new authority, without worrying aboutentagrupdates.

If the directory at the base of a freezing or frozen subtree is not asbteee root (that
is, it has dirauth == AUTH PARENT), the directory’s parent inode is auth pinned. A frozen
tree root dir will authpin its inode IFF it is authoritative AND not a subtree root. This prevents
a parent directory from being concurrently frozen, and a rangesiflting implementation

complications relating to determining the bounds of the frozen region.

B.3.1.4 Cache Expiration for Frozen Subtrees

Cache expiration messages that are received for a subtree thateis &neztemporar-
ily set aside instead of being processed. Only when the subtree is emfaoz the expirations
either processed (if the MDS is authoritative) or discarded (if it is not)caBse either the
exporting or importing metadata can fail during the migration process, the MiDSot tell
whether it will be authoritative or not until the migration completes.

During a migration, the subtree will first be frozen on both the exporteirapdrter,

191



and then all other replicas will be informed of a subtree’s ambiguous atythdhis ensures
that all expirations during migration will go to both parties, and nothing will beifothe event

of a failure.

B.3.2 Normal Migration

The exporter begins by doing some checks in expoxX) to verify that it is permissi-
ble to export the subtree at this time. In particular, the cluster must not lpadily the subtree
root may not be freezing or frozen, and the full path must be readdiocke not conflicted with
a rename). If these conditions are met, the subtree root directory is temhpardh pinned,
the subtree freeze is initiated, and the exporter is committed to the subtree migvatiomg an
intervening failure of the importer or itself.

An MExportDiscover message sent from the exporter to the importerseimmply
to ensure that the inode for the base directory being exported is oper destination node.
It is pinned by the importer to prevent it from being trimmed. This occursreedtwe exporter
completes the freeze of the subtree to ensure that the importer is able toteeihlecaecessary
metadata. When the exporter receives the MDiscoverAck, it allows tieedr® proceed by
removing its temporary auth pin.

The MExportPrep message then follows to populate the importer with a sparggng tr
that includes all directories, inodes, and dentries necessary to reactested subtrees within
the exported region. This replicates metadata as well, but it is pushed dbe Bxporter,
avoiding deadlock with the regular discover and replication processiniffater is responsible

for opening the bounding directory fragments from any third parties aitative for those

192



subtrees before acknowledging. This ensures that the importer hrastatdir auth information

about where authority is re-delegated for all points nested beneathlitreesbeing migrated.
While processing the MExportPrep, the importer freezes the entire suletyam to prevent
any new replication or cache expiration.

A warning stage occurs only if the base subtree directory is open by nodes other
than the importer and exporter. If it is not, then this implies that no metadata witmested
beneath the subtree is replicated by any node other than the importer aeexpbit is,
then a MExportWarning message informs any bystanders that the autharityef region is
temporarily ambiguous, and lists both the exporter and importer as authorMifi@&nodes.
In particular, bystanders who are trimming items from their cache must seratMExpire
messages to both the old and new authorities (see above). Lock-relatedge®sre also
delayed until the authority is no longer ambiguous.

The exporter walks the subtree hierarchy and packages up an MEwrpssage con-
taining all metadata and important stage ¢. information about metadata replicas). At the
same time, the exporter’'s metadata objects are flagged as non-authoritaWdExport mes-
sage sends the actual subtree metadata to the importer. Upon receipt, theriiperts the
data into its cache, marks all objects as authoritative, and logs a copy of altlate in an
ElmportStart journal message. Once that has safely flushed to the ljotimeglies with an
MExportAck. The exporter can now log an EExport journal entry, Wwhittimately specifies
that the export was a success. In the presence of failures, it is theredof the EExport entry
only that disambiguates authority during recovery.

Once logged, the exporter will send an MExportNotify to any bystandsiga,ming

193



them that the authority is no longer ambiguous and cache expirations shos&hbenly to
the new authority (the importer). Once these are acknowledged back tepbeer, implicitly
flushing the bystander to exporter message streams of any stray expiretiices, the exporter
unfreezes the subtree, cleans up its migration-related state, and semalsMExportFinish to
the importer. Upon receipt, the importer logs an ElmportFinish(true) (notirgjljothat the
export was indeed a success), unfreezes its subtree, procaeysgseaied cache expirations,

and cleans up its state.

B.4 Failure Recovery

MDS recovery after a failuree{ g. host crash, process segfault, sufficiently long
network outage) is made possible by the journal kept by each MDS. dlaeplay is compli-
cated, however, because not all state is written to the journal. Although &ltate updates are
logged, the state of the distributed cache( which nodes have in-memory replicas of which
metadata) is not. Furthermore, some metadata operations involve multiple metadets afje
different MDS nodes, requiring a two-phase commit and a resolution dtagey recovery.

The full recovery process is broken down into four stages. Duringeplay stage,
the MDS simply re-reads the contents of the journal, accumulating state in meDoriyg
theresolvestage, the fate of any two-phase updates are determined. Dedognectclient
sessions are reestablished. Finally, duringréjein stage, MDS nodes exchange information
about what metadata objects are replicated with peers in the cluster, lisbstgldistributed

cache and lock state.

194



Certain stages of the recovery occur with respect tadhevery setthe set of MDS
nodes that were participating in the cluster at the time of the first failure. Omedailure has
occurred, the cluster is considemehradedand no new MDS nodes are allowed to join (unless

they are taking over for a failed node) or leave until all nodes have fetgvered.

B.4.1 Journal Replay

Journal replay is relatively straightforward. The Journaler interiaused to read and
write to a journal constructed with objects in the distributed object store, e the journal
size on its own. Replay begins at the last known expire point (the jousiaésnetadata is only
written periodically). Each journal event is read from the journal in sega, and it's replay()
method is called to recover its state. The only caveat to replay is that evémsopthe first
SubtreeMap event are ignored. Once the first subtree map is reptagecemainder of the
journal is processed in its entirety.

When replay completes, the MDS moves to thsolvestage, unless it is the only

MDS in the cluster, in which case it moves directly to theonnecstage.

B.4.2 Resolve Stage

The resolvestage serves to disambiguate the fate any operations that span multiple
metadata servers. These include imports of subtrees of metadata (migredionsttier MDS
nodes to the current node), updates to the anchor table, and clieatiopsrikerenameor
unlinkthat sometimes affect metadata managed by different MDS nodes.

An MDS entering the resolve stage begins by sending a Resolve messéigehera

195



resolving nodes in the recovery set. Surviving MDS nodes also serd@\R message to any
MDS that enters the resolve stage. The Resolve message includes a suhedbgubtrees
currently managed by that node (specified as the root dirfrag and it listumds, if any), a
list of ambiguous imports (subtrees that were partially imported when the faibatared), and
a list of uncommitted slave request IDs (for updates initiated by the target, Mi%ffecting
metadata on the recovering node). Ambiguous imports and uncommitted slaesteqre
defined by the presence ofpaepareevent in the journal but no matchirpmmitted or (in
the case of a surviving MDS sending a Resolve to a recovering MDS)éygdtresponding
in-memory state.

The recovering MDS waits for Resolve messages from all other MDSshedsim-
ilating information about subtree authority for metadata it has recovered thie journal by
setting its CDir dirauth values appropriately. If the Resolve message lists uncommitted slave
requests, a ResolveAck message is sent in response that specifieseguiests committed and
aborted. Ambiguous imports are noted, but not processed until all Resmgsages have been
processed. At that point, subtree authority ambiguities are be resolvsithply checking if
authority for an ambiguous subtree is claimed by another node: if it is, the irtearly didn't
complete.

Once subtree authority has been resolved, the recovering node trirna-a@uthoritative
metadata from its cache, with the exception of that necessary to conniectitaiive subtrees
to the root. On recovery, the MDS has no way of knowing whether neoinesitative metadata
was subsequently updated, requiring all such metadata to be revalidaitegittie rejoin stage;

trimming non-authoritative metadata reduces the amount of metadata that mushbhaged,

196



allowing that process to complete more quickly, and significantly simplifies theepso

B.4.3 Reconnect Stage

The recovering MDS next reestablishes connectivity with any clients withnvh

had open sessions at the time of the crash. It announces itself by seadinglient a copy of the
current MDSMap (which specifies that the sending MDS is in the recomsteef). In response,
each client sends an MClientReconnect, which lists any open files, thepdtiihame, and
issued capabilities. This is necessary primarily because the MDS doesynoh(onously)
journal file opens. Although the file inode number is often sufficient to restate, the full
path name (noted by the client at the time the file was successfully openeduideiddén case

the inode was not replayed from the journal ¢. , it was not recently modified). The MDS
updates the inodfle lock state such that it is compatible with the currently issued capabilities
(e. g. if multiple clients have the read and write capability bits, the lock is put inntideed

state).

B.4.4 Rejoin Stage

During therejoin stage, state about locks and the replication of metadata in memory is
reestablished between MDS nodes. This replication state is necesstrg thstributed MDS
cache and locking to function, but is too expensive to journal. Rejoin iegdboth recovering
MDS nodes (those that crashed and have replayed their journal) asel tthet have survived
(not failed).

A recovering MDS begins the rejoin process only after all other recoyendes also

197



reach the rejoin stage. At that point, each MDS sends a message summahaingetadata it

replicates. Such messages come in two varietieskor strong depending on whether it is a
recovering or surviving MDS, respectively. A recovering nodesetp a rejoin (either strong or
weak) from every other node in the cluster. Surviving MDS nodes s&ndg rejoin messages

to each recovering node only é. not to other survivors).

B.4.4.1 Weak and Strong Rejoin

The initial rejoin message is a declaration of replication, sent from an Mplgating
metadata to the metadata’s authoritative MDSwéak rejoinis sent by nodes recovering from
a failure. Rejoin messages are generated by walking all subtrees in this salitree map for
which it is not authoritative, and declaring any replicated metadata objea mélssage bound
for its authority. The declarations consist of dirfrag identifiers (inodmiper and frag), dentry
names and types, and inode numbers. The weak rejoin also includes adiktoohlly open
files and capabilities that clients have declared during the reconnectisédigl® not fall within
subtrees the recovering node is authoritative for.

A strong rejoinis sent by surviving MDS nodes, and also includes the lock states
associated with each replicated object, any capabilities that are wanted fitg glieh locally
opened files, and any slave ayiins or xlocks held by client requests currently being processed.
The strong rejoin does not include an enumeration of open files.

A recovering node may thus receive a combination of weak and strong regs-
sages, depending on whether its peers also suffered a failure. isgmode will only receive

weak rejoins (from recovering nodes); surviving nodes have loshared state and do not re-

198



join with each other.

When processing a weak rejoin, the MDS will check for any capability g0
should claim. (Such client capabilities are migrated to the authoritative MDS muetthigy
are during a subtree migration.) If the inode does not already exist in teecé will add
the path to a list of inodes to load (see below; surviving nodes will always the inode in
their cache). The MDS will then walk the list of replica declarations, addiegsémder to the
appropriate metadata object replica maps. If the node is recovering, kbekdin directories
will also be set to the SCATTER state to ensure that any remote mtime updatepaned.

If a surviving MDS node receives a weak rejoin (the sender is thexefoecovering
node), the rejoin consists of an exhaustive list of items replicated by tlieiserhe recipient
(survivor) takes the additional step of scouring its own cache for tbjbat were previously
replicated by the sender node but were not recovered from the jpanueadjusting their replica
maps accordingly.

Once a recovering node receives a rejoin from all other nodes, litfetany metadata
for previously issued (or imported) capabilities from disk. Capability impaddtzen processed
(by updating the issued state and notifying the client). Finally, rejoin ackgearerated for all

replicated metadata in the cache.

B.4.4.2 Ack

An ack message is generated in response to each weak or strong rejoin. The ack
contains a newly issued nonce for each replicated object, as well as thiesiaitégs to initialize

replica locks.

199



If the rejoin recipient is a survivor, it can immediately respond with an aekabse
metadata object locks are in a known correct state. If the rejoin recipianeisovering node,
however, it must first wait until all rejoins have been received bafesponding, in case any of
its peers includes a strong declaration that forces a lock into a nonkdsttte.

Once a recovering node receives all expected rejoins and acks, é@snfimm the

rejoin to theactivestate.

B.4.4.3 Missing and Full

It is possible that a strong rejoin will include declarations for replicated ratsad
objects that are not in the recovering node’s local cache. (were not in the journal). In
this case, it is less expensive to acquire those metadata objects fromvivenguvDS node
than from disk. To allow the rejoin to proceed smoothly, the recovering sodply creates
any metadata objects that are missing, and flags inodes to indicate their camée(ds yet)
undefined. The recovering node generatesssingmessage for the sender that lists any inodes
it lacked.

The surviving node responds witHal message that includes the full inode contents

(inodet struct, symlink target, and/or dirfrag tree).

200



B.5 Anchor Table

B.5.1 Table Updates

Anchor table updates are based on a two phase commit. The MDS initiating ateupd
sends reparerequest to the anchor table MDS. The prepare is identified by the inodesmumb
and operation type; only one operation for each type (create, updestiepg) can be pending
per inode at any time. Both parties may actually be the same MDS node, bunfadicity we
treat that situation the same. (That is, we act as if they may fail independarelythough they
can't.)

The anchor table journals the proposed update, and responds vétreemessage
and a anchor table version number. This uniquely identifies the request.

The initiating MDS can then update the file system metadata however it sesgifit (
to perform anunlink or renamg. When it is finished and the operation has been journaled, it
sends &ommitmessage to the anchor table. The table journals the commit, frees any state from
the transaction, and sendsack The initiating MDS should then journal treeckto complete

the transaction.

B.5.2 Failure Recovery

B.5.2.1 Anchor Table MDS Failure

If the anchor table fails before journaling tipgepareand sending thegree the
initiating MDS will simply retry the request.

If the anchor table fails after journalingeparebut before journalingommit it will

201



resendagreeto the initiating MDS.
If the anchor table fails after theommit the transaction has been closed, and it takes

no action. If it receives aommitfor which it has no open transaction, it will reply witltk

B.5.2.2 Initiating MDS Failure

If the MDS fails before the metadata update has been journaled, no actideis ta
since nothing is known about the previously proposed transaction. dsemessage is re-
ceived and there is no correspondimgpareor pending-commit state, andllback is sent to
the anchor table.

If the MDS fails after journaling the metadata update but before journalingdket
resendsommitto the anchor table. If it receives agreeafter resending theommit it simply
ignores theagree The anchor table will respond with atk allowing the initiating MDS to
journal the finalackand close out the transaction locally.

On journal replay, each metadata update (metablob) encountered thdemelu an-
chor transaction is noted in the anchor table client by adding it to the pecdimgnit list, and
each journaledckis removed from that list. Journal replay may encouates with no prior
metadata update; these are ignored. When recovery finisbesyritis sent for all outstanding

transactions.

202



Bibliography

[1] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Cgery R. Ganger,
James Hendricks, Andrew J. Klosterman, Michael Mesnier, Manisha@rd&randon
Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen, John D. StnmKkhEreska,
Matthew Wachs, and Jay J. Wylie. Ursa minor: versatile cluster-baseafystomPro-
ceedings of the 4th USENIX Conference on File and Storage Techno|B4i®3¥) pages

59-72, San Francisco, CA, December 2005.

[2] Atul Adya, William J. Bolosky, Miguel Castro, Ronnie Chaiken, Ger@lekmak, John R.
Douceur, John Howell, Jacob R. Lorch, Marvin Theimer, and Rogdtenaofer. FAR-
SITE: Federated, available, and reliable storage for an incompletelydreist@onment.
In Proceedings of the 5th Symposium on Operating Systems Design anthBngi¢ion

(OSDI), Boston, MA, December 2002. USENIX.

[3] Peter A. Alsberg and John D. Day. A principle for resilient sharifiglistributed re-
sources. IrProceedings of the 2nd International Conference on Software Engjitger

pages 562-570. IEEE Computer Society Press, 1976.

[4] Guillermo A. Alvarez, Walter A. Burkhard, and Flaviu Cristian. Tolergtimultiple

203



failures in RAID architectures with optimal storage and uniform declusteringPro-
ceedings of the 24th Int'l Symposium on Computer Architechages 62—72, Denver,

CO, June 1997. ACM.

[5] Eric Anderson, Joseph Hall, Jason Hartline, Michael Hobbs, Angarlin, Jared Saia,
Ram Swaminathan, and John Wilkes. An experimental study of data migration alg
rithms. InProceedings of the 5th International Workshop on Algorithm Enginegring

pages 145-158, London, UK, 2001. Springer-Verlag.

[6] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spenaastida Uysal, and
Alistair Veitch. Hippodrome: running circles around storage administratioRrdceed-
ings of the 2002 Conference on File and Storage Technologies (FA®hYerey, CA,

January 2002.

[7] Alain Azagury, Vladimir Dreizin, Michael Factor, Ealan Henis, Dalit Nadoam Rinet-
zky, Ohad Rodeh, Julian Satran, Ami Tavory, and Lena Yerushalmi.afasivan object
store. InProceedings of the 20th IEEE / 11th NASA Goddard Conference on Mass

age Systems and Technologieages 165-176, April 2003.

[8] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Sfirand John K.
Ousterhout. Measurements of a distributed file systenPrdceedings of the 13th ACM

Symposium on Operating Systems Principles (SOSPpages 198-212, October 1991.

[9] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, Rayandula, and

204



[10]

[11]

[12]

[13]

[14]

[15]

J. Zheng. PRACTI replication. IRroceedings of the 3rd Symposium on Networked

Systems Design and Implementation (NSpéges 59—-72, May 2006.

Magnus E. Bjornsson and Liuba Shrira. Buddycache: Cachereoce for transactional
peer group applications. I8econd IEEE Workshop on Internet Applications (WIAPP

'01), volume 00, page 57, Los Alamitos, CA, 2001. IEEE Computer Society.

Burton H Bloom. Space/time trade-offs in hash coding with allowablergri©@ommu-

nications of the ACM13(7):422—-426, July 1970.

IEEE Standard BoardInformation technology—Portable Operating System Interface
(POSIX) Part 1: System Application Program Interface (API) [C Laagei Institute of

Electrical and Electronics Engineers, Inc., April 1990.

Peter Braam, Michael Callahan, and Phil Schwan. The intermezzsytem. InPro-
ceedings of the 3rd of the Perl Conference, O’Reilly Open Sourceddbtion Monterey,

CA, USA, August 1999.

Peter J. Braam. The Lustre storage architecture.

http://www.lustre.org/documentation.html, Cluster File Systems, Inc., August 2004.

Scott A. Brandt, Lan Xue, Ethan L. Miller, and Darrell D. E. Longfficient metadata
management in large distributed file systems.Ptceedings of the 20th IEEE / 11th
NASA Goddard Conference on Mass Storage Systems and Technglagies 290-298,

April 2003.

205



[16] A. Brinkmann, S. Effert, F. Meyer auf der Heide, and C. Scheid®ynamic and redun-
dant data placement. Proceedings of the 27th International Conference on Distributed

Computing Systems (ICDCS 'Q2007.

[17] André Brinkmann, Kay Salzwedel, and Christian Scheideler. Efficient, distdbdeta
placement strategies for storage area networksPraceedings of the 12th ACM Sym-
posium on Parallel Algorithms and Architectures (SPA#gges 119-128. ACM Press,

2000. Extended Abstract.

[18] D. M. Choy, R. Fagin, and L. Stockmeyer. Efficiently extendible magpiior balanced

data distribution Algorithmica 16:215-232, 1996.

[19] Douglas Comer. The ubiquitous B-tre&CM Computing Survey41(2):121-137, June

1979.

[20] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel fileisy#A€M Transactions

on Computer Systemb4(3):225-264, 1996.

[21] Frank Dabek, M. Frans Kaashoek, David Karger, Robertridpand lon Stoica. Wide-
area cooperative storage with CFS. Rroceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ‘qigges 202—-215, Banff, Canada, October 2001.

ACM.

[22] Michael Dahlin, Clifford Mather, Randolph Wang, Thomas E. Arster, and David A.
Patterson. A guantitative analysis of cache policies for scalable neti@dyfitems. In

Measurement and Modeling of Computer Systqrages 150-160, 1994.

206



[23] Michael Dahlin, Randy Wang, Tom Anderson, and David Pattersd@ooperative
caching: Using remote client memory to improve file system performancerolceed-
ings of the 1st Symposium on Operating Systems Design and Impleme(@&EDh),

pages 267-280, November 1994.

[24] Tim Kaldeway Roberto C. Pineiro Anna Povzner Scott A. BrandhRid A. Golding
Theodore M. Wong Carlos Maltzahn David O. Bigelow, Suresh lyer.-tereind perfor-
mance management for scalable distributed storagé?rdoeedings of the 2007 ACM

Petascale Data Storage Workshop (PDSW, Blgvember 2007.

[25] John R. Douceur and Jon Howell. Distributed directory service itidisite file system.
In Proceedings of the 7th Symposium on Operating Systems Design anchBngdéon

(OSDI), pages 321-334, Seattle, WA, November 2006. Usenix.

[26] Fred Douglis and John K. Ousterhout. Beating the 1/O bottleneck: & ¢ar log-
structured files systems. Technical Report UCB/CSD 88/467, UniveskiBalifornia,

Berkeley, October 1988.

[27] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo SeltzersiPasfs tracing of
email and research workloads. Rroceedings of the Second USENIX Conference on
File and Storage Technologies (FASpages 203—-216, San Francisco, CA, March 2003.

USENIX.

[28] Richard A. Floyd and Carla Schlatter Ellis. Directory reference padten hierarchical

207



[29]

[30]

[31]

[32]

[33]

[34]

file systems. IEEE Transactions on Knowledge and Data Engineerib():238—-247,

1989.

Gregory R. Ganger and M. Frans Kaashoek. Embedded inaakexglicit groupings:
Exploiting disk bandwidth for small files. IRroceedings of the 1997 USENIX Annual

Technical Conferenggages 1-17. USENIX Association, January 1997.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. Thegledfile system. In
Proceedings of the 19th ACM Symposium on Operating Systems PrinG@&s('03)

Bolton Landing, NY, October 2003. ACM.

Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Glgg Howard Go-
bioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenkaost-effective,
high-bandwidth storage architecture. Pnoceedings of the 8th International Confer-
ence on Architectural Support for Programming Languages and @jpgy Systems (AS-

PLOS) pages 92-103, San Jose, CA, October 1998.

David K. Gifford, Roger M. Needham, and Michael D. Schroedée Cedar file system.

Communications of the ACN1(3), March 1988.

Howard Gobioff, Garth Gibson, and Doug Tygar. Security fammek attached storage

devices. Technical Report TR CMU-CS-97-185, Carniege Mellomok#r 1997.

Ashish Goel, Cyrus Shahabi, Did Shu-Yuen Yao, and Roger Zimmer8&ADDAR:

An efficient randomized technique to reorganize continuous media bldckaroceed-

208



[35]

[36]

[37]

[38]

[39]

[40]

[41]

ings of the 18th International Conference on Data Engineering (ICDE,’pages 473—

482, February 2002.

Richard Golding and Elizabeth Borowsky. Fault-tolerant replicatiomagament in
large-scale distributed storage systems.Piaceedings of the 18th Symposium on Re-

liable Distributed Systems (SRDS '9pages 144-155, October 1999.

Andrew Granville. On elementary proofs of the Prime Number Thedogmrithmetic
Progressions, without characters.Aroceedings of the 1993 Amalfi Conference on An-

alytic Number Theorypages 157-194, Salerno, Italy, 1993.

Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacigghlid durable, de-
centralized storage despite massive correlated failureBrdoeedings of the 2nd Sym-
posium on Networked Systems Design and Implementation (NS@djon, MA, May

2005. USENIX.

C. R. Hertel. Implementing CIFS: The Common Internet File SystéPnentice Hall,

2003.

Dean Hildebrand and Peter Honeyman. Exporting storage systenscalable manner

with pNFS. Technical Report CITI-05-1, CITI, University of Michigarebruary 2005.

Dave Hitz, James Lau, and Michael Malcom. File system design forke® fille server
appliance. InProceedings of the Winter 1994 USENIX Technical Conferepages

235-246, San Francisco, CA, January 1994.

R. J. Honicky and Ethan L. Miller. Replication under scalable hashidamily of

209



algorithms for scalable decentralized data distribution.Ploceedings of the 18th In-
ternational Parallel & Distributed Processing Symposium (IPDPS 208é4hta Fe, NM,

April 2004. IEEE.

[42] Andy Hospodor and Ethan L. Miller. Interconnection architectdoespetabyte-scale
high-performance storage systems.Pimceedings of the 21st IEEE / 12th NASA God-
dard Conference on Mass Storage Systems and Technqlpagigss 273—-281, College

Park, MD, April 2004.

[43] John H. Howard, Michael L. Kazar, Sherri G. Menees, DavidNdchols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. Wes. Scale aiwinpence in a
distributed file systemACM Transactions on Computer Syste®d):51-81, February

1988.

[44] IBM Corporation. IBM white paper. IBM storage tank — a distributéorage system,

January 2002.

[45] Robert J. Jenkins. Hash functions for hash table lookup.

http://burtleburtle.net/bob/hash/evahash.html, 1997.

[46] Minwen Ji, Alistair Veitch, and John Wilkes. Seneca: remote mirroringedarite. In
Proceedings of the 2003 USENIX Annual Technical Confergpages 253—268, June

2003.

[47] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Dahiglvin, and Rina

Panigrahy. Consistent hashing and random trees: Distributed caaiuitogqs for re-

210



[48]

[49]

[50]

[51]

[52]

lieving hot spots on the World Wide Web. ACM Symposium on Theory of Computing

pages 654-663, May 1997.

Peter J Keleher. Decentralized replicated object protocol®rdoeedings of the Eigh-
teenth ACM Symposium on Principles of Distributed Computing (PODC 198@kes

143-151, Atlanta, Georgia, 1999.

Deepak R. Kenchammana-Hosekote, Richard A. Golding, Claudindflend Omer A.
Zaki. The design and evaluation of network raid protocols. TechnicabR&J 10316

(A0403-006), IBM Research, Almaden Center, March 2004.

Richard A. Golding Ralph A. Becker-Szendy Kristal T. Pollack,n@d D. E. Long.
Quota enforcement for high-performance distributed storage systarRsodeedings of
the 24rd IEEE / 14th NASA Goddard Conference on Mass Storage Syatatrilech-

nologies September 2007.

Nancy P. Kronenberg, Henry M. Levy, and William D. Strecke®fX¢lusters: A closely-
coupled distributed systemACM Transactions on Computer Systemf2):130-146,

1986.

John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennisl§&dramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher, dells
Ben Zhao. OceanStore: An architecture for global-scale persistamigsto InPro-
ceedings of the 9th International Conference on Architectural SugpoRrogramming

Languages and Operating Systems (ASPL.QG&inbridge, MA, November 2000. ACM.

211



[53] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay GhemaReoviding high avail-
ability using lazy replicationACM Transactions on Computer Systett3(4):360-391,

November 1992.

[54] Leslie Lamport. The part-time parliamenACM Transactions on Computer Systems

16(2):133-169, 1998.

[55] Rob Latham, Neill Miller, Robert Ross, and Phil Carns. A next-gatien parallel file

system for Linux clusterd.inuxWorld pages 56-59, January 2004.

[56] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributagavdisks. InPro-
ceedings of the 7th International Conference on Architectural SugpoRrogramming

Languages and Operating Systems (ASPLP&)es 84-92, Cambridge, MA, 1996.

[57] Andrew Leung and Ethan L. Miller. Scalable security for large, lmglformance storage
systems. IrProceedings of the 2006 ACM Workshop on Storage Security and Slitviv

ity. ACM, October 2006.

[58] Andrew W. Leung, Ethan L. Miller, and Stephanie Jones. Scaladergy for petascale
parallel file systems. IfProceedings of the 2007 ACM/IEEE Conference on Supercom-

puting (SC '07) November 2007.

[59] Qiao Lian, Wei Chen, and Zheng Zhang. On the impact of replicaepient to the
reliability of distributed brick storage systems. Pnoceedings of the 25th International
Conference on Distributed Computing Systems (ICDCS {#ges 187-196, Los Alami-

tos, CA, 2005. IEEE Computer Society.

212



[60]

[61]

[62]

[63]

[64]

[65]

Barbara Liskov, Mark Day, and Liuba Shrira. Distributed objechagement in thor. In

International Workshop on Distributed Object Managemeages 79-91, 1992.

Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul d#ohrisuba Shrira, and
Michael Williams. Replication in the Harp file system. Pmoceedings of the 13th ACM

Symposium on Operating Systems Principles (SOSP pages 226—238. ACM, 1991.

Christopher R. Lumb, Gregory R. Ganger, and Richard Goldirn@FJIF: Decentralized
request distribution in brick-based storage system®rateedings of the 11th Interna-
tional Conference on Architectural Support for Programming Langsagnd Operating

Systems (ASPLOS$)ages 37-47, Boston, MA, 2004.

John MacCormick, Nick Murphy, Marc Najork, Chandramohan AeRkath, and Li-
dong Zhou. Boxwood: Abstractions as the foundation for storagesiméreture. In
Proceedings of the 6th Symposium on Operating Systems Design andnbngadon

(OSDI), San Francisco, CA, December 2004.

M. Kirk McKusick and Gregory R. Ganger. Soft updates: A tdghe for eliminating
most synchronous writes in the Fast File SystemPiloceedings of the Freenix Track:

1999 USENIX Annual Technical Conferenpages 1-18, June 1999.

Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, and RobS. Fabry. A fast
file system for UNIX. ACM Transactions on Computer Syste@():181-197, August

1984.

213



[66] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hilisb@&M Storage Tank—a

heterogeneous scalable SAN file systéBM Systems Journaft2(2):250-267, 2003.

[67] Ethan L. Miller and Randy H. Katz. RAMA: An easy-to-use, highfpemance parallel

file system.Parallel Computing23(4):419-446, 1997.

[68] David Nagle, Denis Serenyi, and Abbie Matthews. The Panasase&dale stor-
age cluster—delivering scalable high bandwidth storagePrbteedings of the 2004

ACM/IEEE Conference on Supercomputing (SC, dvember 2004.

[69] Christopher A. Olson and Ethan L. Miller. Secure capabilities fortalpge-scale object-
based distributed file system. Rroceedings of the 2005 ACM Workshop on Storage

Security and Survivabilityairfax, VA, November 2005.

[70] Oracle. Rds: Reliable datagram sockets. http://oss.oracle.com/pidgéct/r

[71] John K. Ousterhout, Andrew R. Cherenson, Frederick Doudflishael N. Nelson, and
Brent B. Welch. The Sprite network operating systelBEE Computer21(2):23-36,

February 1988.

[72] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smitheliahel, and Dave
Hitz. NFS version 3: Design and implementation.Aroceedings of the Summer 1994

USENIX Technical Conferencpages 137-151, 1994.

[73] Juan Piernas, Toni Cortes, and &dd. Garéa. Dualfs: a new journaling file system
without meta-data duplication. IRroceedings of the 16th International Conference on
Supercomputingpages 84-95, New York, NY, 2002. ACM.

214



[74] Kristal T. Pollack and Scott A. Brandt. Efficient access contotistributed hierarchical
file systems. IProceedings of the 22nd IEEE / 13th NASA Goddard Conference os Mas

Storage Systems and Technolog#gsril 2005.

[75] Sean Quinlan and Sean Dorward. Venti: A new approach to ac$torage. IProceed-
ings of the 2002 Conference on File and Storage Technologies (FA&d¢s 89-101,

Monterey, California, USA, 2002. USENIX.

[76] Ohad Rodeh and Avi Teperman. zFS—a scalable distributed filersys$ang object
disks. InProceedings of the 20th IEEE / 11th NASA Goddard Conference on Mass

Storage Systems and Technologpesges 207-218, April 2003.

[77] Drew Roselli, Jay Lorch, and Tom Anderson. A comparison of fiigteam workloads.
In Proceedings of the 2000 USENIX Annual Technical Conferepages 41-54, San

Diego, CA, June 2000. USENIX Association.

[78] Mendel Rosenblum and John K. Ousterhout. The design and imptatizenof a log-
structured file systemACM Transactions on Computer Systet¥(1):26-52, February

1992.

[79] Russel Glen Ross. Cluster storage for commodity computation. TedthRe&port

UCAM-CL-TR-690, University of Cambridge, Cambridge, UK, June 200

[80] Antony Rowstron and Peter Druschel. Storage management ahdthgdn PAST, a

large-scale, persistent peer-to-peer storage utilitfProteedings of the 18th ACM Sym-

215



[81]

[82]

[83]

[84]

[85]

posium on Operating Systems Principles (SOSP, 'f&ages 188—-201, Banff, Canada,

October 2001. ACM.

Antony Rowstrong and Peter Druschel. Pastry: Scalable, dedizett object location,
and routing for large-scale peer-to-peer systemsPrbteedings of the IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middlewpagles 329-350,

2001.

Yashushi Saito, Svend Frglund, Alistair Veitch, Arif Merchant, &udan Spence. FAB:
Building distributed enterprise disk arrays from commodity componentBrdoeedings
of the 11th International Conference on Architectural Support for Paogning Lan-

guages and Operating Systems (ASPL@8&yes 48-58, 2004.

Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Malikalngam. Tam-
ing aggressive replication in the Pangaea wide-area file systerRrotreedings of the
5th Symposium on Operating Systems Design and Implementation (QQEEENIX,

December 2002.

Jose Renato Santos, Richard R. Muntz, and Berthier Ribeiro-Netamp@ring ran-
dom data allocation and data striping in multimedia server®réceedings of the 2000
SIGMETRICS Conference on Measurement and Modeling of Compygtn$s pages

44-55, Santa Clara, CA, June 2000. ACM Press.

M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria EBaRkd&llen H. Siegel,

216



and David C. Steere. Coda: A highly available file system for a distributetlstation

environmentIEEE Transactions on Computei39(4):447-459, 1990.

[86] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file ray&ielarge comput-
ing clusters. InProceedings of the 2002 Conference on File and Storage Technologies

(FAST) pages 231-244. USENIX, January 2002.

[87] Margo Seltzer, Keith Bostic, M. Kirk McKusick, and Carl Staelin. An ilmqmentation
of a log-structured file system for UNIX. IRroceedings of the Winter 1993 USENIX

Technical Conferenggages 307—326, January 1993.

[88] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Ch8aga McMains, and
Venkata Padmanabhan. File system logging versus clustering: A perfoensampatri-
son. InProceedings of the Winter 1995 USENIX Technical Confergrages 249-264,

1995.

[89] K. W. Shirriff and J. K. Ousterhout. A trace-driven analysis afre and attribute caching
in a distributed system. IRroceedings of the Winter 1992 USENIX Technical Confer-

ence pages 315-331, San Francisco, CA, January 1992.

[90] lon Stoica, Robert Morris, David Karger, M. Frans Kaashaek] Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applitgtidn Proceed-
ings of the Conference on Applications, Technologies, ArchitecturesPaxtocols for

Computer Communication (SIGCOMM 'Qpages 149-160, San Diego, CA, 2001.

[91] Michael Stonebraker. Concurrency control and consistehoyuttiple copies of data in

217



[92]

[93]

[94]

[95]

[96]

[97]

distributed INGRESIEEE Transactions on Software Engineerii8E-5:188-194, May

1979.

A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, anBé&k. Scalability in
the XFS file system. IiProceedings of the 1996 USENIX Annual Technical Conference

pages 1-14, January 1996.

Hong Tang, Aziz Gulbeden, Jingyu Zhou, William Strathearn, Tangyand Lingkun
Chu. A self-organizing storage cluster for parallel data-intensivéiagtipns. InPro-
ceedings of the 2004 ACM/IEEE Conference on Supercomputing (SCPibgburgh,

PA, November 2004.

Chandramohan A. Thekkath, Timothy Mann, and Edward K. Leangipani: A scal-
able distributed file system. IRroceedings of the 16th ACM Symposium on Operating

Systems Principles (SOSP '9ppges 224-237, 1997.

Theodore Y. Ts'o and Stephen Tweedie. Planned extensions tdrttie EXT2/EXT3
filesystem. InProceedings of the Freenix Track: 2002 USENIX Annual TechnicalC

ference pages 235-244, Monterey, CA, June 2002. USENIX.

Robbert van Renesse and Fred B. Schneider. Chain replicatfosupporting high
throughput and availability. IfProceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSages 91-104, San Francisco, CA, December

2004.

Feng Wang, Scott A. Brandt, Ethan L. Miller, and Darrell D. E. gonOBFS: A file

218



[98]

[99]

[100]

[101]

[102]

system for object-based storage devicesPiloceedings of the 21st IEEE / 12th NASA
Goddard Conference on Mass Storage Systems and Technolpgges 283-300, Col-

lege Park, MD, April 2004. IEEE.

Feng Wang, Qin Xin, Bo Hong, Scott A. Brandt, Ethan L. Miller, BdrD. E. Long,
and Tyce T. McLarty. File system workload analysis for large scale sfieecomputing
applications. IrProceedings of the 21st IEEE / 12th NASA Goddard Conference os Mas

Storage Systems and Technologpesyes 139-152, College Park, MD, April 2004.

Randolph Y. Wang and Thomas E. Anderson. xFS: A wide area staisge file system.
In Proceedings of the Fourth Workshop on Workstation Operating Syspamess 71-78,

1993.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Loragnd Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file systemPrbteedings of the 7th
Symposium on Operating Systems Design and Implementation (OSglftle, WA,

November 2006. USENIX.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzal@RUSH: Con-
trolled, scalable, decentralized placement of replicated dat@rdceedings of the 2006

ACM/IEEE Conference on Supercomputing (SC,0&mpa, FL, November 2006. ACM.

Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and Ethan L. Mill2ynamic metadata
management for petabyte-scale file systems.Pioceedings of the 2004 ACM/IEEE

Conference on Supercomputing (SC (Rittsburgh, PA, November 2004. ACM.

219



[103] Brent Welch. POSIX 10 extensions for HPC.Pnoceedings of the 4th USENIX Confer-

ence on File and Storage Technologies (FA®Bcember 2005.

[104] Brent Welch and Garth Gibson. Managing scalability in object stosygtems for HPC
Linux clusters. InProceedings of the 21st IEEE / 12th NASA Goddard Conference on

Mass Storage Systems and Technolggiages 433—-445, April 2004.

[105] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.etstahding repli-
cation in databases and distributed systemsPrrceedings of the 20th International

Conference on Distributed Computing Systems (ICDCS Z@oO.

[106] Matthias Wiesmann and Andre Schiper. Comparison of databalseatem techniques
based on total order broadcaliEE Transactions on Knowledge and Data Engineering

17(4):551-566, April 2005.

[107] Theodore M. Wong, Richard A. Golding, Joseph S. Glider, EélaBorowsky, Ralph A.
Becker-Szendy, Claudio Fleiner, Deepak R. Kenchammana-HosekoteOmer A.
Zaki. Kybos: self-management for distributed brick-based storagesed®eh Report

RJ 10356, IBM Almaden Research Center, August 2005.

[108] Changxun Wu and Randal Burns. Tunable randomization forwathgement in shared-

disk clusters ACM Transactions on Storag#(1):108—131, December 2004.

[109] Joel C. Wu and Scott A. Brandt. The design and implementation ofAA@n adaptive

guality of service aware object-based storage deviceR?rérweedings of the 23rd IEEE

220



/ 14th NASA Goddard Conference on Mass Storage Systems and [dgigsmgages

209-218, College Park, MD, May 2006.

[110] Joel C. Wu and Scott A. Brandt. Providing quality of service supm object-based
file system. InProceedings of the 24rd IEEE / 14th NASA Goddard Conference os Mas

Storage Systems and Technologisptember 2007.

[111] Qin Xin, Ethan L. Miller, and Thomas J. E. Schwarz. Evaluation dfitlisted recovery
in large-scale storage systemsPlimceedings of the 13th IEEE International Symposium
on High Performance Distributed Computing (HPD@®pges 172-181, Honolulu, HI,

June 2004.

[112] Qin Xin, Ethan L. Miller, Thomas J.E. Schwarz, Darrell D. E. Lo&gott A. Brandt,
and Witold Litwin. Reliability mechanisms for very large storage system$rdaceed-
ings of the 20th IEEE / 11th NASA Goddard Conference on Mass Stoyagen® and

Technologiespages 146-156, April 2003.

[113] Zhihui Zhang and Kanad Ghose. hfs: A hybrid file system prgfpr improving small

file and metadata performance. Rnoceedings of EuroSys 20March 2007.

[114] Ben Y. Zhao, Lin gHuang, Jeremy Stribling, Sean C. Rhea, antdohy D. Joseph nad
John D. Kubiatowicz. Tapestry: A global-scale overlay for rapid serdeployment.

IEEE Journal on Selected Areas in Communicatj@is41-53, January 2003.

221



